Runnies23 commited on
Commit
ad60ffd
·
1 Parent(s): 861b48c

Add application file

Browse files
Files changed (1) hide show
  1. inference_script.py +20 -20
inference_script.py CHANGED
@@ -1,41 +1,41 @@
1
  import numpy as np
2
 
3
  def answer_question(question , model , rerankmodel , corpus_embed , corpus_list,llm_chain):
4
- # embeddings_1 = model.encode(question, batch_size=16, max_length=8192 ,)['dense_vecs']
5
- # embeddings_2 = corpus_embed
6
- # BGM3similarity = embeddings_1 @ embeddings_2.T
7
 
8
  #==========================================================
9
 
10
- ALL_final_ans_list_ALL = []
11
- batch_size = 10
12
 
13
- sentence_pairs = [[question, j] for j in corpus_list]
14
 
15
- listofscore = []
16
- compute_Score = range(0, len(sentence_pairs), batch_size)
17
 
18
- for i in compute_Score:
19
- batch_pairs = sentence_pairs[i:i+batch_size]
20
- allscore = model.compute_score(batch_pairs,
21
- max_passage_length=512,
22
- weights_for_different_modes=[0.4, 0.2, 0.4]) # sum: w[0]*dense_score + w[1]*sparse_score + w[2]*colbert_score
23
- listofscore.append(allscore)
24
 
25
- score_ALL = []
26
 
27
 
28
- for score_dict in listofscore:
29
 
30
- score_ALL.extend(score_dict['colbert+sparse+dense'])
31
 
32
- ALL_final_ans_list_ALL.append(score_ALL)
33
 
34
  #==========================================================
35
 
36
  topkindex = 15
37
- topk15scoresimilar_BGM3 = np.argsort(ALL_final_ans_list_ALL)[:,-topkindex:]
38
- # topk15scoresimilar_BGM3 = np.argsort(BGM3similarity)[-topkindex:]
39
 
40
 
41
  BGM3_1_retrieval = [corpus_list[i] for i in topk15scoresimilar_BGM3[0]]
 
1
  import numpy as np
2
 
3
  def answer_question(question , model , rerankmodel , corpus_embed , corpus_list,llm_chain):
4
+ embeddings_1 = model.encode(question, batch_size=16, max_length=8192 ,)['dense_vecs']
5
+ embeddings_2 = corpus_embed
6
+ BGM3similarity = embeddings_1 @ embeddings_2.T
7
 
8
  #==========================================================
9
 
10
+ # ALL_final_ans_list_ALL = []
11
+ # batch_size = 10
12
 
13
+ # sentence_pairs = [[question, j] for j in corpus_list]
14
 
15
+ # listofscore = []
16
+ # compute_Score = range(0, len(sentence_pairs), batch_size)
17
 
18
+ # for i in compute_Score:
19
+ # batch_pairs = sentence_pairs[i:i+batch_size]
20
+ # allscore = model.compute_score(batch_pairs,
21
+ # max_passage_length=512,
22
+ # weights_for_different_modes=[0.4, 0.2, 0.4]) # sum: w[0]*dense_score + w[1]*sparse_score + w[2]*colbert_score
23
+ # listofscore.append(allscore)
24
 
25
+ # score_ALL = []
26
 
27
 
28
+ # for score_dict in listofscore:
29
 
30
+ # score_ALL.extend(score_dict['colbert+sparse+dense'])
31
 
32
+ # ALL_final_ans_list_ALL.append(score_ALL)
33
 
34
  #==========================================================
35
 
36
  topkindex = 15
37
+ # topk15scoresimilar_BGM3 = np.argsort(ALL_final_ans_list_ALL)[:,-topkindex:]
38
+ topk15scoresimilar_BGM3 = np.argsort(BGM3similarity)[-topkindex:]
39
 
40
 
41
  BGM3_1_retrieval = [corpus_list[i] for i in topk15scoresimilar_BGM3[0]]