|
''' |
|
Author : Rupesh Garsondiya |
|
github : @Rupeshgarsondiya |
|
Organization : L.J University |
|
''' |
|
|
|
|
|
|
|
|
|
|
|
import http |
|
import streamlit as st |
|
from PIL import Image |
|
from train import * |
|
from test import * |
|
|
|
|
|
|
|
|
|
|
|
class Main: |
|
def __init__(self) -> None: |
|
pass |
|
|
|
def run(self): |
|
|
|
|
|
st.markdown( |
|
""" |
|
<style> |
|
.img-rounded { |
|
border-radius: 15px; |
|
width: 400px; /* Adjust the width as needed */ |
|
} |
|
|
|
</style> |
|
<div style="text-align: center;"> |
|
<img src="https://files.oaiusercontent.com/file-S6lexlScJTmrUdOQryfYzaoU?se=2024-10-17T14%3A22%3A34Z&sp=r&sv=2024-08-04&sr=b&rscc=max-age%3D604800%2C%20immutable%2C%20private&rscd=attachment%3B%20filename%3D2e8ff496-d212-449f-a52b-78f7248e5494.webp&sig=TksBgVPhLhPyiFeKp6iLuaFaKmz1rVKPJ5igADyUPCk%3D" alt="User Behavior" width="800" height="400"><br> |
|
|
|
""", |
|
unsafe_allow_html=True |
|
) |
|
st.write() |
|
st.write() |
|
|
|
|
|
t = test() |
|
t.predict_data() |
|
|
|
|
|
st.markdown("[GitHub](https://github.com/Rupeshgarsondiya/User-behaviour-classification) | <a href='https://www.linkedin.com/in/rupesh-garsondiya-919817275/' target='_blank'>Linkedin</a>",unsafe_allow_html=True) |
|
|
|
|
|
|
|
st.markdown("", unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
|
|
|
st.markdown("<hr>", unsafe_allow_html=True) |
|
st.markdown( |
|
"<b><p style='text-align: center; font-size: 16px;'>© 2024 Rupesh Garsondiya. All Rights Reserved.</p>", |
|
unsafe_allow_html=True |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
|
|
st.markdown("<h1 style='text-align: center;'><b>User behaviour classification on user Behaviour Dataset</b></h1>", unsafe_allow_html=True) |
|
|
|
st.markdown("<p ><b> - About this project :</b></p>",unsafe_allow_html=True) |
|
st.write(' - This project is a simple web application that uses a machine learning model to classify user behavior into different categories.') |
|
|
|
st.write(' - The model is trained on a dataset of user behavior and can be used to predict the behavior of a new user based on their mobile data.') |
|
|
|
run_obj = Main() |
|
run_obj.run() |
|
|
|
else : |
|
print("This is a Streamlit app. Please run it using `streamlit run app.py `") |