Rupesh386 commited on
Commit
83f26e9
·
verified ·
1 Parent(s): 28b4baf

Create test.py

Browse files
Files changed (1) hide show
  1. test.py +116 -0
test.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ''''
2
+ Author : Rupesh Garsondiya
3
+ github : @Rupeshgarsondiya
4
+ Organization : L.J University
5
+
6
+ '''
7
+
8
+ import time
9
+ import streamlit as st
10
+ import pandas as pd
11
+ import numpy as np
12
+ from sklearn.preprocessing import StandardScaler
13
+ from train import *
14
+
15
+
16
+ class test :
17
+
18
+ def __init__(self):
19
+ pass
20
+
21
+ def predict_data(self):
22
+
23
+ st.sidebar.title("Select Parameter ")
24
+ mt = Model_Train()
25
+ S_algo,Pipeline = mt.train_model()
26
+ df = None
27
+ options = ["Google Pixel 5", "OnePlus 9", "Samsung Galaxy S21", "Xiaomi Mi 11",'iPhone 12']
28
+
29
+ selected_option = st.sidebar.selectbox("Select phone model :", options)
30
+
31
+ if selected_option in options:
32
+ encoded_model = [1 if i == selected_option else 0 for i in options]
33
+ df = pd.DataFrame([encoded_model], columns=options)
34
+
35
+
36
+
37
+ options1 = ["Android",'IOS']
38
+
39
+
40
+
41
+
42
+ if selected_option =='iPhone 12':
43
+ selected_option1 = st.sidebar.selectbox("Select OS :", 'IOS')
44
+ encoded_os = [0,1]
45
+ else :
46
+ encoded_os = [1,0]
47
+ selected_option1 = st.sidebar.selectbox("Select OS :", 'Android')
48
+ df[options1] = encoded_os
49
+
50
+
51
+ options2 = ['Female','Male']
52
+ selected_option2 = st.sidebar.radio("Select Gender :", options2)
53
+ encoded_gender = [1 if i == selected_option2 else 0 for i in options2]
54
+ df[options2] = encoded_gender
55
+
56
+
57
+ app_time = st.sidebar.number_input('Enter app time : ',min_value=0.0,max_value=24.0,value=0.0)
58
+ df['App_Time(hours/day)'] = app_time
59
+
60
+
61
+ screen_time = st.sidebar.number_input('Enter your screen time : ',min_value=0.0,max_value=24.0,value=0.0)
62
+ df['screen_Time(hours/day)'] = screen_time
63
+
64
+
65
+ battary = st.sidebar.number_input('Enter battary drain(mAh) : ',min_value=100.0,max_value=6000.0,value=100.0)
66
+ df['Battery_Drain(mAh)'] = battary
67
+
68
+
69
+ no_app = st.sidebar.number_input('Enter number of apps installed : ',min_value=5.0,max_value=50.0,value=5.0)
70
+ df['Installed_app'] = no_app
71
+
72
+
73
+ data_use = st.sidebar.number_input('Enter data usage (GB) : ',min_value=0.0,max_value=10.0,value=0.0)
74
+ df['Data_Usage(GB)'] = data_use
75
+
76
+
77
+ age = st.sidebar.number_input('Enter your age : ',min_value=15.0,max_value=100.0,value=15.0)
78
+ df['Age'] = age
79
+
80
+ if st.button("Submit"):
81
+ st.write("Processing...")
82
+ time.sleep(2)
83
+ prediction = S_algo.predict(df)
84
+ if prediction==1:
85
+
86
+ st.write('Output : Occasional Users')
87
+ elif prediction==2:
88
+ st.write('Output : Casual Users ')
89
+ elif prediction==3:
90
+ st.write('Output : content consumer : ')
91
+ elif prediction==4:
92
+ st.write('Output : Social Media Enthusiasts')
93
+ else :
94
+ st.write('Output : Power Users')
95
+
96
+
97
+
98
+
99
+
100
+
101
+
102
+
103
+
104
+
105
+
106
+
107
+
108
+
109
+
110
+
111
+
112
+
113
+
114
+
115
+
116
+