Delete build_features.py
Browse files- build_features.py +0 -79
build_features.py
DELETED
|
@@ -1,79 +0,0 @@
|
|
| 1 |
-
'''
|
| 2 |
-
Author : Rupesh Garsondiya
|
| 3 |
-
github : @Rupeshgarsondiya
|
| 4 |
-
Organization : L.J university
|
| 5 |
-
|
| 6 |
-
'''
|
| 7 |
-
|
| 8 |
-
# Feature Engineering
|
| 9 |
-
|
| 10 |
-
# import library
|
| 11 |
-
|
| 12 |
-
import pandas as pd
|
| 13 |
-
import numpy as np
|
| 14 |
-
import streamlit as st
|
| 15 |
-
from sklearn.preprocessing import OneHotEncoder,StandardScaler
|
| 16 |
-
from sklearn.model_selection import train_test_split
|
| 17 |
-
from sklearn.pipeline import Pipeline,make_pipeline
|
| 18 |
-
from sklearn.compose import ColumnTransformer
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
'''create class FeatureEngineering is created to perform feature engineering on the dataset'''
|
| 22 |
-
class FeatureEngineering:
|
| 23 |
-
|
| 24 |
-
def __init__(self): # define constructor
|
| 25 |
-
pass
|
| 26 |
-
|
| 27 |
-
def cleandata(self):
|
| 28 |
-
data = pd.read_csv('/home/rupeshgarsondiya/workstation/lab/Project-1/Data/user_behavior_dataset.csv') # load Dataset
|
| 29 |
-
|
| 30 |
-
data.drop('User ID',axis=1,inplace=True) # Drop user id column it not required
|
| 31 |
-
|
| 32 |
-
'''Rename column name'''
|
| 33 |
-
data.rename(columns={'Device Model':'P_Model','Operating System':'OS','App Usage Time (min/day)':'App_Time(hours/day)',
|
| 34 |
-
'Screen On Time (hours/day)':'(hours/Screen_timeday)','Battery Drain (mAh/day)':'Battery_Drain(mAh/day)',
|
| 35 |
-
'Number of Apps Installed':'Installed_app','Data Usage (MB/day)':'Data_Usage(GB/day)'},inplace=True)
|
| 36 |
-
|
| 37 |
-
# App time convert minit into the hours
|
| 38 |
-
data['App_Time(hours/day)']=data['App_Time(hours/day)']/60
|
| 39 |
-
|
| 40 |
-
# convert data use MB into GB
|
| 41 |
-
data['Data_Usage(GB/day)']=data['Data_Usage(GB/day)']/1024
|
| 42 |
-
|
| 43 |
-
return data
|
| 44 |
-
|
| 45 |
-
def get_clean_data(self):
|
| 46 |
-
df = FeatureEngineering().cleandata()
|
| 47 |
-
print(df.head())
|
| 48 |
-
|
| 49 |
-
X = df.drop('User Behavior Class', axis=1)
|
| 50 |
-
y = df['User Behavior Class']
|
| 51 |
-
|
| 52 |
-
x_train,x_test,y_train,y_test = train_test_split(X,y,test_size=0.2)
|
| 53 |
-
|
| 54 |
-
categorical_col = ['P_Model','OS','Gender']
|
| 55 |
-
categorical_transform = OneHotEncoder()
|
| 56 |
-
|
| 57 |
-
numerical_col = ['Battery_Drain(mAh/day)']
|
| 58 |
-
numerical_transform = StandardScaler()
|
| 59 |
-
|
| 60 |
-
# use to column transformer to perform onehotencoing and standard scaling
|
| 61 |
-
preprocessor = ColumnTransformer(
|
| 62 |
-
transformers=[
|
| 63 |
-
|
| 64 |
-
('cat', categorical_transform, categorical_col)
|
| 65 |
-
],remainder='passthrough')
|
| 66 |
-
|
| 67 |
-
# create sklearn pipeline
|
| 68 |
-
pipeline = Pipeline(steps=[('preprocessor', preprocessor)])
|
| 69 |
-
pipeline.fit(x_train)
|
| 70 |
-
pipeline.fit(x_test)
|
| 71 |
-
x_train_t = pipeline.transform(x_train)
|
| 72 |
-
x_test_t = pipeline.transform(x_test)
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
return x_train_t,x_test_t,y_train,y_test,pipeline
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|