''' Author : Rupesh Garsondiya github : @Rupeshgarsondiya Organization : L.J university ''' # Feature Engineering # import library import pandas as pd import numpy as np import streamlit as st from sklearn.preprocessing import OneHotEncoder,StandardScaler from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline,make_pipeline from sklearn.compose import ColumnTransformer '''create class FeatureEngineering is created to perform feature engineering on the dataset''' class FeatureEngineering: def __init__(self): # define constructor pass def cleandata(self): data = pd.read_csv('Data/user_behavior_dataset.csv') # load Dataset data.drop('User ID',axis=1,inplace=True) # Drop user id column it not required '''Rename column name''' data.rename(columns={'Device Model':'P_Model','Operating System':'OS','App Usage Time (min/day)':'App_Time(hours/day)', 'Screen On Time (hours/day)':'(hours/Screen_timeday)','Battery Drain (mAh/day)':'Battery_Drain(mAh/day)', 'Number of Apps Installed':'Installed_app','Data Usage (MB/day)':'Data_Usage(GB/day)'},inplace=True) # App time convert minit into the hours data['App_Time(hours/day)']=data['App_Time(hours/day)']/60 # convert data use MB into GB data['Data_Usage(GB/day)']=data['Data_Usage(GB/day)']/1024 return data def get_clean_data(self): df = FeatureEngineering().cleandata() print(df.head()) X = df.drop('User Behavior Class', axis=1) y = df['User Behavior Class'] x_train,x_test,y_train,y_test = train_test_split(X,y,test_size=0.2) categorical_col = ['P_Model','OS','Gender'] categorical_transform = OneHotEncoder() numerical_col = ['Battery_Drain(mAh/day)'] numerical_transform = StandardScaler() # use to column transformer to perform onehotencoing and standard scaling preprocessor = ColumnTransformer( transformers=[ ('cat', categorical_transform, categorical_col) ],remainder='passthrough') # create sklearn pipeline pipeline = Pipeline(steps=[('preprocessor', preprocessor)]) pipeline.fit(x_train) pipeline.fit(x_test) x_train_t = pipeline.transform(x_train) x_test_t = pipeline.transform(x_test) return x_train_t,x_test_t,y_train,y_test,pipeline