Spaces:
Runtime error
Runtime error
File size: 2,762 Bytes
e3d46c8 8158997 e3d46c8 0788ae6 56b99e8 0788ae6 e3d46c8 56b99e8 0788ae6 a85495d 68d6aa3 093cd61 68d6aa3 8158997 68d6aa3 8158997 68d6aa3 bceabb4 68d6aa3 bceabb4 68d6aa3 bceabb4 0788ae6 bceabb4 68d6aa3 0788ae6 8158997 0788ae6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import streamlit as st
from transformers import pipeline
import torch
import matplotlib.pyplot as plt
#pipe = pipeline(model="RuudVelo/dutch_news_classifier_bert_finetuned")
#text = st.text_area('Please type/copy/paste the Dutch article')
#labels = ['Binnenland' 'Buitenland' 'Cultuur & Media' 'Economie' 'Koningshuis'
# 'Opmerkelijk' 'Politiek' 'Regionaal nieuws' 'Tech']
#if text:
# out = pipe(text)
# st.json(out)
# load tokenizer and model, create trainer
#model_name = "RuudVelo/dutch_news_classifier_bert_finetuned"
#tokenizer = AutoTokenizer.from_pretrained(model_name)
#model = AutoModelForSequenceClassification.from_pretrained(model_name)
#trainer = Trainer(model=model)
#print(filename, type(filename))
#print(filename.name)
from transformers import BertForSequenceClassification, BertTokenizer
model = BertForSequenceClassification.from_pretrained("RuudVelo/dutch_news_clf_bert_finetuned")
#from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained("RuudVelo/dutch_news_clf_bert_finetuned")
# Title
st.title("Dutch news article classification")
#text = st.text_area('Please type/copy/paste text of the Dutch article')
#if text:
# encoding = tokenizer(text, return_tensors="pt")
# outputs = model(**encoding)
# predictions = outputs.logits.argmax(-1)
# probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
## fig = plt.figure()
# ax = fig.add_axes([0,0,1,1])
# labels_plot = ['Binnenland', 'Buitenland' ,'Cultuur & Media' ,'Economie' ,'Koningshuis',
# 'Opmerkelijk' ,'Politiek', 'Regionaal nieuws', 'Tech']
# probs_plot = probabilities[0].cpu().detach().numpy()
# ax.barh(labels_plot,probs_plot )
# st.pyplot(fig)
input = st.text_input('Context')
if st.button('Submit'):
with st.spinner('Generating a response...'):
encoding = tokenizer(text, return_tensors="pt")
outputs = model(**encoding)
predictions = outputs.logits.argmax(-1)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
fig = plt.figure()
ax = fig.add_axes([0,0,1,1])
labels_plot = ['Binnenland', 'Buitenland' ,'Cultuur & Media' ,'Economie' ,'Koningshuis',
'Opmerkelijk' ,'Politiek', 'Regionaal nieuws', 'Tech']
probs_plot = probabilities[0].cpu().detach().numpy()
ax.barh(labels_plot,probs_plot )
st.pyplot(fig)
# output = genQuestion(option, input)
# print(output)
# st.write(output)
#encoding = tokenizer(text, return_tensors="pt")
#import numpy as np
#arr = np.random.normal(1, 1, size=100)
#fig, ax = plt.subplots()
#ax.hist(arr, bins=20)
#st.pyplot(fig)
# forward pass
#outputs = model(**encoding)
#predictions = outputs.logits.argmax(-1)
|