File size: 7,589 Bytes
14bac19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""
Visualization for topic modeling analysis results
"""
from visualization.ngram_visualizer import create_ngram_visualization
import gradio as gr
import json
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots

def create_topic_visualization(analysis_results):
    """
    Create visualizations for topic modeling analysis results
    
    Args:
        analysis_results (dict): Analysis results from the topic modeling analysis
        
    Returns:
        list: List of gradio components with visualizations
    """
    # Initialize output components list
    output_components = []
    
    # Check if we have valid results
    if not analysis_results or "analyses" not in analysis_results:
        return [gr.Markdown("No analysis results found.")]
    
    # Process each prompt
    for prompt, analyses in analysis_results["analyses"].items():
        # Process Topic Modeling analysis if available
        if "topic_modeling" in analyses:
            topic_results = analyses["topic_modeling"]
            
            # Show method and number of topics
            method = topic_results.get("method", "lda").upper()
            n_topics = topic_results.get("n_topics", 3)
            output_components.append(gr.Markdown(f"## Topic Modeling Analysis ({method}, {n_topics} topics)"))
            
            # Show models being compared
            models = topic_results.get("models", [])
            if len(models) >= 2:
                output_components.append(gr.Markdown(f"### Comparing responses from {models[0]} and {models[1]}"))
                
                # Visualize topics
                topics = topic_results.get("topics", [])
                if topics:
                    output_components.append(gr.Markdown("### Discovered Topics"))
                    
                    for topic in topics:
                        topic_id = topic.get("id", 0)
                        words = topic.get("words", [])
                        weights = topic.get("weights", [])
                        
                        # Create topic word bar chart
                        if words and weights and len(words) == len(weights):
                            # Create dataframe for plotting
                            df = pd.DataFrame({
                                'word': words,
                                'weight': weights
                            })
                            
                            # Sort by weight
                            df = df.sort_values('weight', ascending=False)
                            
                            # Create bar chart
                            fig = px.bar(
                                df, x='word', y='weight',
                                title=f"Topic {topic_id+1} Top Words",
                                labels={'word': 'Word', 'weight': 'Weight'},
                                height=300
                            )
                            
                            output_components.append(gr.Plot(value=fig))
                
                # Visualize topic distributions for each model
                model_topics = topic_results.get("model_topics", {})
                if model_topics and all(model in model_topics for model in models):
                    output_components.append(gr.Markdown("### Topic Distribution by Model"))
                    
                    # Create multi-model topic distribution comparison
                    fig = go.Figure()
                    for model in models:
                        if model in model_topics:
                            distribution = model_topics[model]
                            fig.add_trace(go.Bar(
                                x=[f"Topic {i+1}" for i in range(len(distribution))],
                                y=distribution,
                                name=model
                            ))
                    
                    fig.update_layout(
                        title="Topic Distributions Comparison",
                        xaxis_title="Topic",
                        yaxis_title="Weight",
                        barmode='group',
                        height=400
                    )
                    
                    output_components.append(gr.Plot(value=fig))
                
                # Visualize topic differences
                comparisons = topic_results.get("comparisons", {})
                if comparisons:
                    output_components.append(gr.Markdown("### Topic Distribution Differences"))
                    
                    for comparison_key, comparison_data in comparisons.items():
                        js_divergence = comparison_data.get("js_divergence", 0)
                        topic_differences = comparison_data.get("topic_differences", [])
                        
                        output_components.append(gr.Markdown(
                            f"**{comparison_key}** - Jensen-Shannon Divergence: {js_divergence:.4f}"
                        ))
                        
                        if topic_differences:
                            # Create DataFrame for plotting
                            model1, model2 = comparison_key.split(" vs ")
                            df_diff = pd.DataFrame(topic_differences)
                            
                            # Create bar chart for topic differences
                            fig = go.Figure()
                            fig.add_trace(go.Bar(
                                x=[f"Topic {d['topic_id']+1}" for d in topic_differences],
                                y=[d["model1_weight"] for d in topic_differences],
                                name=model1
                            ))
                            fig.add_trace(go.Bar(
                                x=[f"Topic {d['topic_id']+1}" for d in topic_differences],
                                y=[d["model2_weight"] for d in topic_differences],
                                name=model2
                            ))
                            
                            fig.update_layout(
                                title="Topic Weight Comparison",
                                xaxis_title="Topic",
                                yaxis_title="Weight",
                                barmode='group',
                                height=400
                            )
                            
                            output_components.append(gr.Plot(value=fig))
    
    # If no components were added, show a message
    if len(output_components) <= 1:
        output_components.append(gr.Markdown("No detailed Topic Modeling analysis found in results."))
    
    return output_components


def process_and_visualize_topic_analysis(analysis_results):
    """
    Process the topic modeling analysis results and create visualization components
    
    Args:
        analysis_results (dict): The analysis results
        
    Returns:
        list: List of gradio components for visualization
    """
    try:
        print(f"Starting visualization of topic modeling analysis results")
        return create_topic_visualization(analysis_results)
    except Exception as e:
        import traceback
        error_msg = f"Topic modeling visualization error: {str(e)}\n{traceback.format_exc()}"
        print(error_msg)
        return [gr.Markdown(f"**Error during topic modeling visualization:**\n\n```\n{error_msg}\n```")]