File size: 7,803 Bytes
4ebaf08
 
 
6b7b8b5
5ba1ab4
 
 
4ebaf08
5ba1ab4
 
4ebaf08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import gradio as gr
import json

# Import analysis modules 
#from processors.topic_modeling import extract_topics, compare_topics
#from processors.ngram_analysis import compare_ngrams
#from processors.bias_detection import compare_bias
from processors.bow_analysis import compare_bow
#from processors.metrics import calculate_similarity
#from processors.diff_highlighter import highlight_differences

def create_analysis_screen():
    """
    Create the analysis options screen
    
    Returns:
        tuple: (analysis_options, analysis_params, run_analysis_btn, analysis_output)
    """
    with gr.Column() as analysis_screen:
        gr.Markdown("## Analysis Options")
        gr.Markdown("Select which analyses you want to run on the LLM responses.")
        
        # Analysis selection
        with gr.Group():
            analysis_options = gr.CheckboxGroup(
                choices=[
                    "Topic Modeling",
                    "N-gram Analysis",
                    "Bias Detection",
                    "Bag of Words",
                    "Similarity Metrics",
                    "Difference Highlighting"
                ],
                value=[
                    "Topic Modeling",
                    "N-gram Analysis",
                    "Bag of Words",
                    "Similarity Metrics"
                ],
                label="Select Analyses to Run"
            )
        
        # Parameters for each analysis type
        with gr.Accordion("Analysis Parameters", open=False) as analysis_params:
            # Topic modeling parameters
            with gr.Group():
                gr.Markdown("### Topic Modeling Parameters")
                topic_count = gr.Slider(minimum=2, maximum=10, value=3, step=1, 
                                       label="Number of Topics")
            
            # N-gram parameters
            with gr.Group():
                gr.Markdown("### N-gram Parameters")
                ngram_n = gr.Radio(choices=["1", "2", "3"], value="2", 
                                  label="N-gram Size")
                ngram_top = gr.Slider(minimum=5, maximum=30, value=10, step=1, 
                                     label="Top N-grams to Display")
            
            # Bias detection parameters
            with gr.Group():
                gr.Markdown("### Bias Detection Parameters")
                bias_methods = gr.CheckboxGroup(
                    choices=["Sentiment Analysis", "Partisan Leaning", "Framing Analysis"],
                    value=["Sentiment Analysis", "Partisan Leaning"],
                    label="Bias Detection Methods"
                )
            
            # Bag of Words parameters  
            with gr.Group():
                gr.Markdown("### Bag of Words Parameters")
                bow_top = gr.Slider(minimum=10, maximum=100, value=25, step=5, 
                                   label="Top Words to Compare")
                
            # Similarity metrics parameters
            with gr.Group():
                gr.Markdown("### Similarity Metrics Parameters")
                similarity_metrics = gr.CheckboxGroup(
                    choices=["Cosine Similarity", "Jaccard Similarity", "Semantic Similarity"],
                    value=["Cosine Similarity", "Semantic Similarity"],
                    label="Similarity Metrics to Calculate"
                )
        
        # Run analysis button
        run_analysis_btn = gr.Button("Run Analysis", variant="primary", size="large")
        
        # Analysis output area
        analysis_output = gr.JSON(label="Analysis Results", visible=False)
    
    return analysis_options, analysis_params, run_analysis_btn, analysis_output

def process_analysis_request(dataset, selected_analyses, parameters):
    """
    Process the analysis request and run selected analyses
    
    Args:
        dataset (dict): The dataset containing prompts and LLM responses
        selected_analyses (list): List of selected analysis types
        parameters (dict): Parameters for each analysis type
        
    Returns:
        tuple: (analysis_results, analysis_output_display)
    """
    if not dataset or "entries" not in dataset or not dataset["entries"]:
        return {}, gr.update(visible=True, value=json.dumps({"error": "No dataset provided or dataset is empty"}, indent=2))
    
    analysis_results = {"analyses": {}}
    
    # Group responses by prompt
    prompts = {}
    for entry in dataset["entries"]:
        if entry["prompt"] not in prompts:
            prompts[entry["prompt"]] = []
        prompts[entry["prompt"]].append({
            "model": entry["model"],
            "response": entry["response"]
        })
    
    # Run selected analyses for each prompt
    for prompt, responses in prompts.items():
        analysis_results["analyses"][prompt] = {}
        
        # Extract just the text responses and model names
        response_texts = [r["response"] for r in responses]
        model_names = [r["model"] for r in responses]
        
        # Run Topic Modeling
        if "Topic Modeling" in selected_analyses:
            num_topics = parameters.get("topic_count", 3)
            topic_results = compare_topics(response_texts, model_names, num_topics)
            analysis_results["analyses"][prompt]["topic_modeling"] = topic_results
        
        # Run N-gram Analysis
        if "N-gram Analysis" in selected_analyses:
            n = int(parameters.get("ngram_n", 2))
            top_n = parameters.get("ngram_top", 10)
            ngram_results = compare_ngrams(response_texts, model_names, n, top_n)
            analysis_results["analyses"][prompt]["ngram_analysis"] = ngram_results
        
        # Run Bias Detection
        if "Bias Detection" in selected_analyses:
            bias_methods = parameters.get("bias_methods", ["Sentiment Analysis", "Partisan Leaning"])
            bias_results = compare_bias(response_texts, model_names, bias_methods)
            analysis_results["analyses"][prompt]["bias_detection"] = bias_results
        
        # Run Bag of Words Analysis
        if "Bag of Words" in selected_analyses:
            top_words = parameters.get("bow_top", 25)
            bow_results = compare_bow(response_texts, model_names, top_words)
            analysis_results["analyses"][prompt]["bag_of_words"] = bow_results
        
        # Run Similarity Metrics
        if "Similarity Metrics" in selected_analyses:
            metrics = parameters.get("similarity_metrics", ["Cosine Similarity"])
            similarity_results = {}
            
            # Calculate pairwise similarities
            for i in range(len(responses)):
                for j in range(i+1, len(responses)):
                    model_pair = f"{model_names[i]} vs {model_names[j]}"
                    similarity_results[model_pair] = calculate_similarity(
                        response_texts[i], response_texts[j], metrics
                    )
            
            analysis_results["analyses"][prompt]["similarity_metrics"] = similarity_results
        
        # Run Difference Highlighting
        if "Difference Highlighting" in selected_analyses:
            diff_results = {}
            
            # Calculate pairwise differences
            for i in range(len(responses)):
                for j in range(i+1, len(responses)):
                    model_pair = f"{model_names[i]} vs {model_names[j]}"
                    diff_results[model_pair] = highlight_differences(
                        response_texts[i], response_texts[j]
                    )
            
            analysis_results["analyses"][prompt]["difference_highlighting"] = diff_results
    
    return analysis_results, gr.update(visible=True, value=json.dumps(analysis_results, indent=2))