File size: 11,905 Bytes
14bac19
f533950
 
14bac19
 
 
 
 
 
 
f533950
 
 
 
 
 
14bac19
 
 
 
 
 
 
 
 
 
 
f533950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14bac19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f533950
 
 
 
 
 
 
 
14bac19
 
 
 
 
 
 
f533950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14bac19
f533950
 
 
 
 
14bac19
f533950
 
 
 
 
 
 
 
 
 
14bac19
f533950
 
 
 
 
14bac19
f533950
 
 
1b72959
b559aef
1b72959
 
 
 
 
 
 
 
 
b559aef
1b72959
 
 
 
f533950
 
b559aef
 
 
 
f533950
1b72959
 
 
f533950
 
 
 
1b72959
 
f533950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
"""
Enhanced topic modeling processor for comparing text responses with better error handling
and more robust algorithm configuration
"""
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.decomposition import LatentDirichletAllocation, NMF
import numpy as np
import nltk
from nltk.corpus import stopwords
import re
from scipy.spatial import distance
import logging

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger('topic_modeling')

def preprocess_text(text):
    """
    Preprocess text for topic modeling
    
    Args:
        text (str): Text to preprocess
        
    Returns:
        str: Preprocessed text
    """
    try:
        # Convert to lowercase
        text = text.lower()
        
        # Remove special characters and digits
        text = re.sub(r'[^a-zA-Z\s]', '', text)
        
        # Tokenize
        tokens = nltk.word_tokenize(text)
        
        # Remove stopwords
        stop_words = set(stopwords.words('english'))
        tokens = [token for token in tokens if token not in stop_words and len(token) > 3]
        
        return ' '.join(tokens)
    except Exception as e:
        logger.error(f"Error in preprocess_text: {str(e)}")
        # Return original text if preprocessing fails
        return text

def get_top_words_per_topic(model, feature_names, n_top_words=10):
    """
    Get the top words for each topic in the model
    
    Args:
        model: Topic model (LDA or NMF)
        feature_names (list): Feature names (words)
        n_top_words (int): Number of top words to include per topic
        
    Returns:
        list: List of topics with their top words
    """
    topics = []
    for topic_idx, topic in enumerate(model.components_):
        top_words_idx = topic.argsort()[:-n_top_words - 1:-1]
        top_words = [feature_names[i] for i in top_words_idx]
        topic_dict = {
            "id": topic_idx,
            "words": top_words,
            "weights": topic[top_words_idx].tolist()
        }
        topics.append(topic_dict)
    return topics

def extract_topics(texts, n_topics=3, n_top_words=10, method="lda"):
    """
    Extract topics from a list of texts
    
    Args:
        texts (list): List of text documents
        n_topics (int): Number of topics to extract
        n_top_words (int): Number of top words per topic
        method (str): Topic modeling method ('lda' or 'nmf')
        
    Returns:
        dict: Topic modeling results with topics and document-topic distributions
    """
    if isinstance(n_topics, str):
        n_topics = int(n_topics)
        
    # Ensure n_topics is at least 2
    n_topics = max(2, n_topics)
    
    logger.info(f"Starting topic modeling with method={method}, n_topics={n_topics}")
    
    result = {
        "method": method,
        "n_topics": n_topics,
        "topics": [],
        "document_topics": []
    }
    
    try:
        # Preprocess texts
        logger.info("Preprocessing texts")
        preprocessed_texts = [preprocess_text(text) for text in texts]
        
        # Check if texts are not empty after preprocessing
        preprocessed_texts = [text for text in preprocessed_texts if len(text.strip()) > 0]
        if not preprocessed_texts:
            logger.warning("All texts are empty after preprocessing")
            return result
        
        # Create document-term matrix
        logger.info(f"Creating document-term matrix using {method}")
        if method == "nmf":
            # For NMF, use TF-IDF vectorization
            vectorizer = TfidfVectorizer(max_features=1000, min_df=1, max_df=0.95, stop_words='english')
        else:
            # For LDA, use CountVectorizer
            vectorizer = CountVectorizer(max_features=1000, min_df=1, max_df=0.95, stop_words='english')
        
        try:
            X = vectorizer.fit_transform(preprocessed_texts)
            feature_names = vectorizer.get_feature_names_out()
            
            # Check if we have enough features
            if X.shape[1] < n_topics:
                logger.warning(f"Only {X.shape[1]} features found, reducing n_topics from {n_topics}")
                n_topics = max(2, X.shape[1] - 1)
                result["n_topics"] = n_topics
            
            # Apply topic modeling
            logger.info(f"Applying {method.upper()} with {n_topics} topics")
            if method == "nmf":
                # Non-negative Matrix Factorization
                model = NMF(n_components=n_topics, random_state=42, max_iter=1000)
            else:
                # Latent Dirichlet Allocation
                model = LatentDirichletAllocation(
                    n_components=n_topics, 
                    random_state=42, 
                    max_iter=20,
                    learning_method='online'
                )
            
            topic_distribution = model.fit_transform(X)
            
            # Get top words for each topic
            logger.info("Extracting top words for each topic")
            result["topics"] = get_top_words_per_topic(model, feature_names, n_top_words)
            
            # Get topic distribution for each document
            logger.info("Calculating topic distributions for documents")
            for i, dist in enumerate(topic_distribution):
                # Normalize for easier comparison
                normalized_dist = dist / np.sum(dist) if np.sum(dist) > 0 else dist
                result["document_topics"].append({
                    "document_id": i,
                    "distribution": normalized_dist.tolist()
                })
                
            logger.info("Topic modeling completed successfully")
            
        except Exception as e:
            logger.error(f"Error in vectorization or modeling: {str(e)}")
            result["error"] = f"Topic modeling failed: {str(e)}"
            
    except Exception as e:
        logger.error(f"General error in extract_topics: {str(e)}")
        result["error"] = f"Topic modeling failed: {str(e)}"
    
    return result

def calculate_jensen_shannon_divergence(p, q):
    """
    Calculate Jensen-Shannon divergence between two probability distributions
    
    Args:
        p (array): First probability distribution
        q (array): Second probability distribution
        
    Returns:
        float: Jensen-Shannon divergence
    """
    # Ensure inputs are numpy arrays
    p = np.array(p)
    q = np.array(q)
    
    # Normalize if not already normalized
    if np.sum(p) != 1.0:
        p = p / np.sum(p) if np.sum(p) > 0 else p
    if np.sum(q) != 1.0:
        q = q / np.sum(q) if np.sum(q) > 0 else q
    
    # Calculate Jensen-Shannon divergence
    m = 0.5 * (p + q)
    return 0.5 * (distance.jensenshannon(p, m) + distance.jensenshannon(q, m))

def compare_topics(texts_set_1, texts_set_2, n_topics=3, n_top_words=10, method="lda", model_names=None):
    """
    Compare topics between two sets of texts
    
    Args:
        texts_set_1 (list): First list of text documents
        texts_set_2 (list): Second list of text documents
        n_topics (int): Number of topics to extract
        n_top_words (int): Number of top words per topic
        method (str): Topic modeling method ('lda' or 'nmf')
        model_names (list, optional): Names of the models being compared
        
    Returns:
        dict: Comparison results with topics from both sets and similarity metrics
    """
    logger.info(f"Starting topic comparison with n_topics={n_topics}, method={method}")
    
    # Set default model names if not provided
    if model_names is None:
        model_names = ["Model 1", "Model 2"]
    
    # Initialize the result structure
    result = {
        "method": method,
        "n_topics": n_topics,
        "models": model_names,
        "model_topics": {},
        "topics": [],
        "comparisons": {}
    }
    
    try:
        # Extract topics for each set separately
        # For very short texts, try combining all texts from each model
        combined_text_1 = " ".join(texts_set_1)
        combined_text_2 = " ".join(texts_set_2)
        
        # Process all texts together to find common topics
        all_texts = texts_set_1 + texts_set_2
        logger.info(f"Processing {len(all_texts)} total texts")
        
        # Extract topics from combined corpus
        combined_result = extract_topics(all_texts, n_topics, n_top_words, method)
        
        # Check for errors
        if "error" in combined_result:
            logger.warning(f"Error in combined topic extraction: {combined_result['error']}")
            result["error"] = combined_result["error"]
            return result
        
        # Store topics from combined analysis
        result["topics"] = combined_result["topics"]
        
        # Now process each text set to get their topic distributions
        model1_doc_topics = []
        model2_doc_topics = []
        
        # Try to use the same model from combined analysis for consistency
        if "document_topics" in combined_result and len(combined_result["document_topics"]) == len(all_texts):
            # Get document topics for each model
            n_docs_model1 = len(texts_set_1)
            for i, doc_topic in enumerate(combined_result["document_topics"]):
                if i < n_docs_model1:
                    model1_doc_topics.append(doc_topic["distribution"])
                else:
                    model2_doc_topics.append(doc_topic["distribution"])
        else:
            # Fallback: run separate topic modeling for each model
            logger.info("Using separate topic modeling for each model")
            model1_result = extract_topics([combined_text_1], n_topics, n_top_words, method)
            model2_result = extract_topics([combined_text_2], n_topics, n_top_words, method)
            
            if "document_topics" in model1_result and model1_result["document_topics"]:
                model1_doc_topics = [doc["distribution"] for doc in model1_result["document_topics"]]
            
            if "document_topics" in model2_result and model2_result["document_topics"]:
                model2_doc_topics = [doc["distribution"] for doc in model2_result["document_topics"]]
        
        # Calculate average topic distribution for each model
        if model1_doc_topics:
            model1_avg_distribution = np.mean(model1_doc_topics, axis=0).tolist()
            result["model_topics"][model_names[0]] = model1_avg_distribution
        
        if model2_doc_topics:
            model2_avg_distribution = np.mean(model2_doc_topics, axis=0).tolist()
            result["model_topics"][model_names[1]] = model2_avg_distribution
        
        # Calculate similarity between models' topic distributions
        if model_names[0] in result["model_topics"] and model_names[1] in result["model_topics"]:
            comparison_key = f"{model_names[0]} vs {model_names[1]}"
            dist1 = result["model_topics"][model_names[0]]
            dist2 = result["model_topics"][model_names[1]]
            
            # Calculate Jensen-Shannon divergence (smaller means more similar)
            js_div = calculate_jensen_shannon_divergence(dist1, dist2)
            
            # Create comparison result
            result["comparisons"][comparison_key] = {
                "js_divergence": js_div
            }
            
            logger.info(f"Topic comparison completed successfully. JS divergence: {js_div:.4f}")
        else:
            logger.warning("Could not calculate model comparisons due to missing topic distributions")
            
    except Exception as e:
        logger.error(f"Error in compare_topics: {str(e)}")
        result["error"] = f"Topic comparison failed: {str(e)}"
    
    return result