File size: 9,023 Bytes
c74b269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
"""
Bias detection processor for analyzing political bias in text responses
"""
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
from sklearn.feature_extraction.text import CountVectorizer
import re
import json
import os
import numpy as np

# Ensure NLTK resources are available
def download_nltk_resources():
    """Download required NLTK resources if not already downloaded"""
    try:
        nltk.download('vader_lexicon', quiet=True)
    except:
        pass
        
download_nltk_resources()

# Dictionary of partisan-leaning words
# These are simplified examples; a real implementation would use a more comprehensive lexicon
PARTISAN_WORDS = {
    "liberal": [
        "progressive", "equity", "climate", "reform", "collective", 
        "diversity", "inclusive", "sustainable", "justice", "regulation"
    ],
    "conservative": [
        "traditional", "freedom", "liberty", "individual", "faith", 
        "values", "efficient", "deregulation", "patriot", "security"
    ]
}

# Dictionary of framing patterns
FRAMING_PATTERNS = {
    "economic": [
        r"econom(y|ic|ics)", r"tax(es|ation)", r"budget", r"spend(ing)", 
        r"jobs?", r"wage", r"growth", r"inflation", r"invest(ment)?"
    ],
    "moral": [
        r"values?", r"ethic(s|al)", r"moral(s|ity)", r"right(s|eous)", 
        r"wrong", r"good", r"bad", r"faith", r"belief", r"tradition(al)?"
    ],
    "security": [
        r"secur(e|ity)", r"defense", r"protect(ion)?", r"threat", 
        r"danger(ous)?", r"safe(ty)?", r"nation(al)?", r"terror(ism|ist)"
    ],
    "social_welfare": [
        r"health(care)?", r"education", r"welfare", r"benefit", r"program", 
        r"help", r"assist(ance)?", r"support", r"service", r"care"
    ]
}

def detect_sentiment_bias(text):
    """
    Analyze the sentiment of a text to identify potential bias
    
    Args:
        text (str): The text to analyze
        
    Returns:
        dict: Sentiment analysis results
    """
    sia = SentimentIntensityAnalyzer()
    sentiment = sia.polarity_scores(text)
    
    # Determine if sentiment indicates bias
    if sentiment['compound'] >= 0.25:
        bias_direction = "positive"
        bias_strength = min(1.0, sentiment['compound'] * 2)  # Scale to 0-1
    elif sentiment['compound'] <= -0.25:
        bias_direction = "negative"
        bias_strength = min(1.0, abs(sentiment['compound'] * 2))  # Scale to 0-1
    else:
        bias_direction = "neutral"
        bias_strength = 0.0
    
    return {
        "sentiment_scores": sentiment,
        "bias_direction": bias_direction,
        "bias_strength": bias_strength
    }

def detect_partisan_leaning(text):
    """
    Analyze text for partisan-leaning language
    
    Args:
        text (str): The text to analyze
        
    Returns:
        dict: Partisan leaning analysis results
    """
    text_lower = text.lower()
    
    # Count partisan words
    liberal_count = 0
    conservative_count = 0
    
    liberal_matches = []
    conservative_matches = []
    
    # Search for partisan words in text
    for word in PARTISAN_WORDS["liberal"]:
        matches = re.findall(r'\b' + word + r'\b', text_lower)
        if matches:
            liberal_count += len(matches)
            liberal_matches.extend(matches)
            
    for word in PARTISAN_WORDS["conservative"]:
        matches = re.findall(r'\b' + word + r'\b', text_lower)
        if matches:
            conservative_count += len(matches)
            conservative_matches.extend(matches)
    
    # Calculate partisan lean score (-1 to 1, negative = liberal, positive = conservative)
    total_count = liberal_count + conservative_count
    if total_count > 0:
        lean_score = (conservative_count - liberal_count) / total_count
    else:
        lean_score = 0
    
    # Determine leaning based on score
    if lean_score <= -0.2:
        leaning = "liberal"
        strength = min(1.0, abs(lean_score * 2))
    elif lean_score >= 0.2:
        leaning = "conservative"
        strength = min(1.0, lean_score * 2)
    else:
        leaning = "balanced"
        strength = 0.0
    
    return {
        "liberal_count": liberal_count,
        "conservative_count": conservative_count,
        "liberal_terms": liberal_matches,
        "conservative_terms": conservative_matches,
        "lean_score": lean_score,
        "leaning": leaning,
        "strength": strength
    }

def detect_framing_bias(text):
    """
    Analyze how the text frames issues
    
    Args:
        text (str): The text to analyze
        
    Returns:
        dict: Framing analysis results
    """
    text_lower = text.lower()
    framing_counts = {}
    framing_examples = {}
    
    # Count framing patterns
    for frame, patterns in FRAMING_PATTERNS.items():
        framing_counts[frame] = 0
        framing_examples[frame] = []
        
        for pattern in patterns:
            matches = re.findall(pattern, text_lower)
            if matches:
                framing_counts[frame] += len(matches)
                # Store up to 5 examples of each frame
                unique_matches = set(matches)
                framing_examples[frame].extend(list(unique_matches)[:5])
    
    # Calculate dominant frame
    total_framing = sum(framing_counts.values())
    framing_distribution = {}
    
    if total_framing > 0:
        for frame, count in framing_counts.items():
            framing_distribution[frame] = count / total_framing
        
        dominant_frame = max(framing_counts.items(), key=lambda x: x[1])[0]
        frame_bias_strength = max(0.0, framing_distribution[dominant_frame] - 0.25)
    else:
        dominant_frame = "none"
        frame_bias_strength = 0.0
        framing_distribution = {frame: 0.0 for frame in FRAMING_PATTERNS.keys()}
    
    return {
        "framing_counts": framing_counts,
        "framing_examples": framing_examples,
        "framing_distribution": framing_distribution,
        "dominant_frame": dominant_frame,
        "frame_bias_strength": frame_bias_strength
    }

def compare_bias(text1, text2, model_names=None):
    """
    Compare potential bias in two texts
    
    Args:
        text1 (str): First text to analyze
        text2 (str): Second text to analyze
        model_names (list): Optional names of models being compared
        
    Returns:
        dict: Comparative bias analysis
    """
    # Set default model names if not provided
    if model_names is None or len(model_names) < 2:
        model_names = ["Model 1", "Model 2"]
    
    model1_name, model2_name = model_names[0], model_names[1]
    
    # Analyze each text
    sentiment_results1 = detect_sentiment_bias(text1)
    sentiment_results2 = detect_sentiment_bias(text2)
    
    partisan_results1 = detect_partisan_leaning(text1)
    partisan_results2 = detect_partisan_leaning(text2)
    
    framing_results1 = detect_framing_bias(text1)
    framing_results2 = detect_framing_bias(text2)
    
    # Determine if there's a significant difference in bias
    sentiment_difference = abs(sentiment_results1["bias_strength"] - sentiment_results2["bias_strength"])
    
    # For partisan leaning, compare the scores (negative is liberal, positive is conservative)
    partisan_difference = abs(partisan_results1["lean_score"] - partisan_results2["lean_score"])
    
    # Calculate overall bias difference
    overall_difference = (sentiment_difference + partisan_difference) / 2
    
    # Compare dominant frames
    frame_difference = framing_results1["dominant_frame"] != framing_results2["dominant_frame"] and \
                      (framing_results1["frame_bias_strength"] > 0.1 or framing_results2["frame_bias_strength"] > 0.1)
    
    # Create comparative analysis
    comparative = {
        "sentiment": {
            model1_name: sentiment_results1["bias_direction"],
            model2_name: sentiment_results2["bias_direction"],
            "difference": sentiment_difference,
            "significant": sentiment_difference > 0.3
        },
        "partisan": {
            model1_name: partisan_results1["leaning"],
            model2_name: partisan_results2["leaning"],
            "difference": partisan_difference,
            "significant": partisan_difference > 0.4
        },
        "framing": {
            model1_name: framing_results1["dominant_frame"],
            model2_name: framing_results2["dominant_frame"],
            "different_frames": frame_difference
        },
        "overall": {
            "difference": overall_difference,
            "significant_bias_difference": overall_difference > 0.35
        }
    }
    
    return {
        "models": model_names,
        model1_name: {
            "sentiment": sentiment_results1,
            "partisan": partisan_results1,
            "framing": framing_results1
        },
        model2_name: {
            "sentiment": sentiment_results2,
            "partisan": partisan_results2,
            "framing": framing_results2
        },
        "comparative": comparative
    }