File size: 21,926 Bytes
929cfb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
"""
Enhanced topic modeling processor for comparing text responses
"""
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.decomposition import LatentDirichletAllocation, NMF
import numpy as np
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import re
from scipy.spatial import distance

def load_all_datasets_for_topic_modeling():
    """
    Load all dataset files and prepare them for topic modeling.
    Uses multiple approaches to ensure files are found.
    
    Returns:
        tuple: (all_model1_responses, all_model2_responses, all_model_names)
    """
    import os
    from pathlib import Path
    from utils.text_dataset_parser import parse_text_file
    
    all_model1_responses = []
    all_model2_responses = []
    all_model_names = set()
    
    # APPROACH 1: Try loading specific known files
    known_files = [
        "person-harris.txt",
        "person-trump.txt", 
        "topic-foreign_policy.txt",
        "topic-the_economy.txt"
    ]
    
    # Try different possible paths
    possible_paths = [
        "dataset",
        os.path.join(os.path.dirname(__file__), "..", "dataset"),
        os.path.abspath("dataset")
    ]
    
    dataset_dir = None
    for path in possible_paths:
        if os.path.exists(path) and os.path.isdir(path):
            dataset_dir = path
            print(f"Found dataset directory at: {path}")
            
            # Try to load each known file
            for file_name in known_files:
                file_path = os.path.join(path, file_name)
                
                if os.path.exists(file_path):
                    try:
                        print(f"Loading known dataset: {file_name}")
                        dataset = parse_text_file(file_path)
                        
                        if dataset.get("response1") and dataset.get("response2"):
                            all_model1_responses.append(dataset.get("response1"))
                            all_model2_responses.append(dataset.get("response2"))
                            
                            # Collect model names
                            if dataset.get("model1"):
                                all_model_names.add(dataset.get("model1"))
                            if dataset.get("model2"):
                                all_model_names.add(dataset.get("model2"))
                            
                            print(f"Successfully loaded {file_name}")
                    except Exception as e:
                        print(f"Error loading file {file_name}: {e}")
            
            # We've found a dataset directory, no need to check other paths
            break
    
    # Convert set to list for model names
    model_names_list = list(all_model_names)
    if len(model_names_list) < 2:
        # If we couldn't find enough model names, use defaults
        model_names_list = ["Model 1", "Model 2"]
    
    print(f"Total loaded: {len(all_model1_responses)} response1 entries and {len(all_model2_responses)} response2 entries")
    
    return all_model1_responses, all_model2_responses, model_names_list

def download_nltk_resources():
    """Download required NLTK resources if not already downloaded"""
    try:
        nltk.download('stopwords', quiet=True)
        nltk.download('wordnet', quiet=True)
        nltk.download('punkt', quiet=True)
    except:
        pass

# Ensure NLTK resources are available
download_nltk_resources()

def preprocess_text(text):
    """
    Preprocess text for topic modeling with improved tokenization and lemmatization
    
    Args:
        text (str): Text to preprocess
        
    Returns:
        str: Preprocessed text
    """
    # Convert to lowercase
    text = text.lower()
    
    # Remove special characters and digits but keep spaces (fixed regex)
    text = re.sub(r'[^a-zA-Z\s]', '', text)
    
    # Tokenize
    tokens = nltk.word_tokenize(text)
    
    # Remove stopwords
    stop_words = set(stopwords.words('english'))
    
    # Reduced custom stopwords list - keep more meaningful political terms
    custom_stopwords = {'the', 'and', 'of', 'to', 'in', 'a', 'is', 'that', 'for', 
                        'with', 'as', 'by', 'at', 'an', 'this', 'these', 'those'}
    
    stop_words.update(custom_stopwords)
    
    # Lemmatize tokens - CHANGED from len(token) > 3 to len(token) > 2
    # This keeps more meaningful short words like "tax", "war", "law", etc.
    lemmatizer = WordNetLemmatizer()
    tokens = [lemmatizer.lemmatize(token) for token in tokens 
              if token not in stop_words and len(token) > 2]
    
    return ' '.join(tokens)

def get_coherence_score(model, feature_names, doc_term_matrix):
    """
    Calculate topic coherence score (approximation of UMass coherence)
    
    Args:
        model: Topic model (LDA or NMF)
        feature_names: Feature names (words)
        doc_term_matrix: Document-term matrix
        
    Returns:
        float: Coherence score
    """
    coherence_scores = []
    
    for topic_idx, topic in enumerate(model.components_):
        top_words_idx = topic.argsort()[:-11:-1]  # Top 10 words
        top_words = [feature_names[i] for i in top_words_idx]
        
        # Calculate co-occurrence for all word pairs
        word_pairs_scores = []
        for i in range(len(top_words)):
            for j in range(i+1, len(top_words)):
                word_i = top_words[i]
                word_j = top_words[j]
                
                # Get indices of these words in feature_names
                try:
                    word_i_idx = list(feature_names).index(word_i)
                    word_j_idx = list(feature_names).index(word_j)
                
                    # Calculate co-occurrence (approximation)
                    doc_i = doc_term_matrix[:, word_i_idx].toarray().flatten()
                    doc_j = doc_term_matrix[:, word_j_idx].toarray().flatten()
                    
                    co_occur = sum(1 for x, y in zip(doc_i, doc_j) if x > 0 and y > 0)
                    word_pairs_scores.append(co_occur)
                except:
                    continue
        
        if word_pairs_scores:
            coherence_scores.append(sum(word_pairs_scores) / len(word_pairs_scores))
    
    # Average coherence across all topics
    if coherence_scores:
        return sum(coherence_scores) / len(coherence_scores)
    return 0.0

def get_top_words_per_topic(model, feature_names, n_top_words=10):
    """
    Get the top words for each topic in the model with improved word selection
    
    Args:
        model: Topic model (LDA or NMF)
        feature_names (list): Feature names (words)
        n_top_words (int): Number of top words to include per topic
        
    Returns:
        list: List of topics with their top words
    """
    topics = []
    for topic_idx, topic in enumerate(model.components_):
        top_words_idx = topic.argsort()[:-n_top_words - 1:-1]
        top_words = [feature_names[i] for i in top_words_idx]
        top_weights = topic[top_words_idx].tolist()
        
        # Normalize weights for better visualization
        total_weight = sum(top_weights)
        if total_weight > 0:
            normalized_weights = [w/total_weight for w in top_weights]
        else:
            normalized_weights = top_weights
        
        topic_dict = {
            "id": topic_idx,
            "words": top_words,
            "weights": normalized_weights,
            "raw_weights": top_weights
        }
        topics.append(topic_dict)
    return topics

def calculate_topic_diversity(topics):
    """
    Calculate topic diversity based on word overlap
    
    Args:
        topics (list): List of topics with their words
        
    Returns:
        float: Topic diversity score (0-1, higher is more diverse)
    """
    if not topics or len(topics) < 2:
        return 1.0  # Maximum diversity for a single topic
    
    # Calculate Jaccard distance between all topic pairs
    jaccard_distances = []
    for i in range(len(topics)):
        for j in range(i+1, len(topics)):
            words_i = set(topics[i]["words"])
            words_j = set(topics[j]["words"])
            
            # Jaccard distance = 1 - Jaccard similarity
            # Jaccard similarity = |intersection| / |union|
            intersection = len(words_i.intersection(words_j))
            union = len(words_i.union(words_j))
            
            if union > 0:
                jaccard_distance = 1 - (intersection / union)
                jaccard_distances.append(jaccard_distance)
    
    # Average Jaccard distance as diversity measure
    if jaccard_distances:
        return sum(jaccard_distances) / len(jaccard_distances)
    return 0.0

def extract_topics(texts, n_topics=3, n_top_words=10, method="lda"):
    """
    Extract topics from a list of texts with enhanced preprocessing and metrics
    
    Args:
        texts (list): List of text documents
        n_topics (int): Number of topics to extract
        n_top_words (int): Number of top words per topic
        method (str): Topic modeling method ('lda' or 'nmf')
        
    Returns:
        dict: Topic modeling results with topics and document-topic distributions
    """
    result = {
        "method": method,
        "n_topics": n_topics,
        "topics": [],
        "document_topics": []
    }
    
    # Handle empty input
    if not texts or all(not text.strip() for text in texts):
        result["error"] = "No text content to analyze"
        return result
    
    # Preprocess texts
    preprocessed_texts = [preprocess_text(text) for text in texts]
    
    # Check if we have enough content after preprocessing
    if all(not text.strip() for text in preprocessed_texts):
        result["error"] = "No meaningful content after preprocessing"
        return result
    
    # Calculate total word count (new check)
    total_words = sum(len(text.split()) for text in preprocessed_texts)
    if total_words < 50:  # Topic modeling needs sufficient text
        result["error"] = f"Not enough text content ({total_words} words) for reliable topic modeling. Topic modeling works best with longer texts."
        return result
    
    try:
        # Create document-term matrix
        if method == "nmf":
            # For NMF, use TF-IDF vectorization
            vectorizer = TfidfVectorizer(max_features=1000, min_df=1, max_df=1.0)
        else:
            # For LDA, use CountVectorizer
            vectorizer = CountVectorizer(max_features=1000, min_df=1, max_df=1.0)
        
        X = vectorizer.fit_transform(preprocessed_texts)
        
        # Check if we have enough features
        feature_names = vectorizer.get_feature_names_out()
        if len(feature_names) < n_topics * 2:
            # Adjust n_topics if we don't have enough features
            original_n_topics = n_topics
            n_topics = max(2, len(feature_names) // 2)
            result["adjusted_n_topics"] = n_topics
            result["original_n_topics"] = original_n_topics
            
            # Add a warning message
            result["warning"] = f"Topic count reduced from {original_n_topics} to {n_topics} due to limited vocabulary"
        
        # Apply topic modeling
        if method == "nmf":
            # Non-negative Matrix Factorization
            model = NMF(n_components=n_topics, random_state=42, max_iter=500, 
                        alpha=0.1, l1_ratio=0.5)
        else:
            # Latent Dirichlet Allocation with better hyperparameters
            model = LatentDirichletAllocation(
                n_components=n_topics, 
                random_state=42,
                max_iter=30,
                learning_method='online',
                learning_offset=50.0,
                doc_topic_prior=0.1,
                topic_word_prior=0.01
            )
        
        topic_distribution = model.fit_transform(X)
        
        # Get top words for each topic
        result["topics"] = get_top_words_per_topic(model, feature_names, n_top_words)
        
        # Get topic distribution for each document
        for i, dist in enumerate(topic_distribution):
            # Normalize for easier comparison
            normalized_dist = dist / np.sum(dist) if np.sum(dist) > 0 else dist
            result["document_topics"].append({
                "document_id": i,
                "distribution": normalized_dist.tolist()
            })
        
        # Calculate coherence score
        result["coherence_score"] = get_coherence_score(model, feature_names, X)
        
        # Calculate topic diversity
        result["diversity_score"] = calculate_topic_diversity(result["topics"])
        
        return result
    except Exception as e:
        import traceback
        result["error"] = f"Topic modeling failed: {str(e)}"
        result["traceback"] = traceback.format_exc()
        print(f"Topic modeling error details: {traceback.format_exc()}")
        return result

def calculate_js_divergence(p, q):
    """
    Calculate Jensen-Shannon divergence between two distributions
    
    Args:
        p (list): First probability distribution
        q (list): Second probability distribution
        
    Returns:
        float: JS divergence (0-1, lower means more similar)
    """
    # Convert to numpy arrays
    p = np.array(p)
    q = np.array(q)
    
    # Convert to proper probability distributions
    p = p / np.sum(p) if np.sum(p) > 0 else p
    q = q / np.sum(q) if np.sum(q) > 0 else q
    
    # Calculate JS divergence
    m = (p + q) / 2
    
    # Handle potential errors
    kl_pm = 0
    for pi, mi in zip(p, m):
        if pi > 0 and mi > 0:
            kl_pm += pi * np.log2(pi / mi)
    
    kl_qm = 0
    for qi, mi in zip(q, m):
        if qi > 0 and mi > 0:
            kl_qm += qi * np.log2(qi / mi)
    
    js_divergence = (kl_pm + kl_qm) / 2
    return js_divergence

def compare_topics(texts_set_1, texts_set_2, n_topics=3, n_top_words=10, method="lda", model_names=None):
    """
    Compare topics between two sets of texts with enhanced metrics
    
    Args:
        texts_set_1 (list): First list of text documents
        texts_set_2 (list): Second list of text documents
        n_topics (int): Number of topics to extract
        n_top_words (int): Number of top words per topic
        method (str): Topic modeling method ('lda' or 'nmf')
        model_names (list, optional): Names of the models being compared
        
    Returns:
        dict: Comparison results with topics from both sets and similarity metrics
    """
    # Set default model names if not provided
    if model_names is None:
        model_names = ["Model 1", "Model 2"]
    
    # Handle case where both sets are the same (e.g., comparing same document against itself)
    if texts_set_1 == texts_set_2:
        texts_set_2 = texts_set_2.copy()  # Create a copy to avoid reference issues
    
    # Combine both sets for a first check on text length
    all_texts = texts_set_1 + texts_set_2
    total_words = sum(len(text.split()) for text in all_texts)
    
    # Early length check
    if total_words < 100:  # Arbitrary threshold for very short texts
        return {
            "error": f"Combined texts are too short ({total_words} words) for reliable topic modeling. Try using texts with at least 100 words total or reduce the number of topics.",
            "method": method,
            "n_topics": n_topics,
            "models": model_names
        }
    
    # Extract topics for each set individually
    topics_set_1 = extract_topics(texts_set_1, n_topics, n_top_words, method)
    topics_set_2 = extract_topics(texts_set_2, n_topics, n_top_words, method)
    
    # Extract topics for combined set (for a common topic space)
    combined_topics = extract_topics(all_texts, n_topics, n_top_words, method)
    
    # Check for errors
    errors = []
    warnings = []
    
    if "error" in topics_set_1:
        errors.append(f"Error in {model_names[0]} analysis: {topics_set_1['error']}")
    if "warning" in topics_set_1:
        warnings.append(f"Warning in {model_names[0]} analysis: {topics_set_1['warning']}")
        
    if "error" in topics_set_2:
        errors.append(f"Error in {model_names[1]} analysis: {topics_set_2['error']}")
    if "warning" in topics_set_2:
        warnings.append(f"Warning in {model_names[1]} analysis: {topics_set_2['warning']}")
        
    if "error" in combined_topics:
        errors.append(f"Error in combined analysis: {combined_topics['error']}")
    if "warning" in combined_topics:
        warnings.append(f"Warning in combined analysis: {combined_topics['warning']}")
    
    # If we have critical errors, return early with error information
    if errors:
        return {
            "error": " | ".join(errors),
            "warnings": warnings if warnings else None,
            "method": method,
            "n_topics": n_topics,
            "models": model_names
        }
    
    # Start building the result
    result = {
        "method": method,
        "n_topics": n_topics,
        "models": model_names
    }
    
    # Add warnings if any
    if warnings:
        result["warnings"] = warnings
    
    # If n_topics was adjusted, use the adjusted value
    if "adjusted_n_topics" in topics_set_1 or "adjusted_n_topics" in topics_set_2 or "adjusted_n_topics" in combined_topics:
        result["adjusted_n_topics"] = min(
            topics_set_1.get("adjusted_n_topics", n_topics),
            topics_set_2.get("adjusted_n_topics", n_topics),
            combined_topics.get("adjusted_n_topics", n_topics)
        )
        result["original_n_topics"] = n_topics
    
    # Add topics from individual sets
    result["topics"] = combined_topics.get("topics", [])
    
    # Calculate similarity between topics if we have results from both sets
    if "topics" in topics_set_1 and "topics" in topics_set_2:
        similarity_matrix = []
        for topic1 in topics_set_1["topics"]:
            topic_similarities = []
            words1 = set(topic1["words"])
            for topic2 in topics_set_2["topics"]:
                words2 = set(topic2["words"])
                # Jaccard similarity: intersection over union
                intersection = len(words1.intersection(words2))
                union = len(words1.union(words2))
                similarity = intersection / union if union > 0 else 0
                topic_similarities.append(similarity)
            similarity_matrix.append(topic_similarities)
        
        result["similarity_matrix"] = similarity_matrix
        
        # Find the best matching topic pairs
        matched_topics = []
        for i, similarities in enumerate(similarity_matrix):
            best_match_idx = np.argmax(similarities)
            matched_topics.append({
                "set1_topic_id": i,
                "set1_topic_words": topics_set_1["topics"][i]["words"],
                "set2_topic_id": best_match_idx,
                "set2_topic_words": topics_set_2["topics"][best_match_idx]["words"],
                "similarity": similarities[best_match_idx]
            })
        
        result["matched_topics"] = matched_topics
        result["average_similarity"] = np.mean([match["similarity"] for match in matched_topics])
    
    # Calculate topic distribution differences
    topic_differences = []
    if (topics_set_1.get("document_topics", []) and 
        topics_set_2.get("document_topics", [])):
        
        # Get average topic distribution for each set
        dist1 = np.mean([doc["distribution"] for doc in topics_set_1["document_topics"]], axis=0)
        dist2 = np.mean([doc["distribution"] for doc in topics_set_2["document_topics"]], axis=0)
        
        for i in range(min(len(dist1), len(dist2))):
            topic_differences.append({
                "topic_id": i,
                "model1_weight": float(dist1[i]),
                "model2_weight": float(dist2[i]),
                "difference": float(abs(dist1[i] - dist2[i]))
            })
        
        result["topic_differences"] = topic_differences
    
    # Calculate JS Divergence if we have distributions
    js_divergence = 0
    if (topics_set_1.get("document_topics", []) and 
        topics_set_2.get("document_topics", [])):
        
        # Get topic distributions
        dist1 = topics_set_1["document_topics"][0]["distribution"]
        dist2 = topics_set_2["document_topics"][0]["distribution"]
        
        # Calculate JS divergence
        js_divergence = calculate_js_divergence(dist1, dist2)
        result["js_divergence"] = js_divergence
    
    # Add model-specific topic distributions
    result["model_topics"] = {
        model_names[0]: topics_set_1.get("document_topics", [{}])[0].get("distribution", []) if topics_set_1.get("document_topics", []) else [],
        model_names[1]: topics_set_2.get("document_topics", [{}])[0].get("distribution", []) if topics_set_2.get("document_topics", []) else []
    }
    
    # Add comparison metrics
    result["comparisons"] = {
        f"{model_names[0]} vs {model_names[1]}": {
            "js_divergence": js_divergence,
            "topic_differences": topic_differences,
            "average_topic_similarity": result.get("average_similarity", 0)
        }
    }
    
    # Add coherence and diversity scores
    result["coherence_scores"] = {
        model_names[0]: topics_set_1.get("coherence_score", 0),
        model_names[1]: topics_set_2.get("coherence_score", 0),
        "combined": combined_topics.get("coherence_score", 0)
    }
    
    result["diversity_scores"] = {
        model_names[0]: topics_set_1.get("diversity_score", 0),
        model_names[1]: topics_set_2.get("diversity_score", 0),
        "combined": combined_topics.get("diversity_score", 0)
    }
    
    return result