Spaces:
Build error
Build error
Ryan
commited on
Commit
·
36f7a03
1
Parent(s):
7bf325d
update
Browse files- app.bak.py +7 -0
- app.py +135 -4
app.bak.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
def greet(name):
|
| 4 |
+
return "Hello " + name + "!!"
|
| 5 |
+
|
| 6 |
+
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 7 |
+
demo.launch()
|
app.py
CHANGED
|
@@ -1,7 +1,138 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
|
| 5 |
+
# Import UI components
|
| 6 |
+
from ui.main_screen import create_main_screen
|
| 7 |
+
from ui.dataset_input import create_dataset_input, process_dataset_submission, load_example_dataset
|
| 8 |
+
from ui.analysis_screen import create_analysis_screen, process_analysis_request
|
| 9 |
+
from ui.visualization_screen import create_visualization_screen, update_visualization
|
| 10 |
+
from ui.classification_screen import create_classification_screen, update_classification_results
|
| 11 |
+
from ui.report_screen import create_report_screen, update_report, update_with_llm_analysis
|
| 12 |
|
| 13 |
+
# Import utility functions
|
| 14 |
+
from utils.llm_analyzer import run_llm_analysis
|
| 15 |
+
from utils.report_generator import create_report, export_report
|
| 16 |
+
from utils.text_dataset_parser import get_available_text_datasets
|
| 17 |
+
|
| 18 |
+
def create_app():
|
| 19 |
+
"""
|
| 20 |
+
Create the complete Gradio app with all tabs
|
| 21 |
+
|
| 22 |
+
Returns:
|
| 23 |
+
gr.Blocks: The Gradio application
|
| 24 |
+
"""
|
| 25 |
+
with gr.Blocks(title="LLM Response Comparator", theme=gr.themes.Soft()) as app:
|
| 26 |
+
# Application states to share data between tabs
|
| 27 |
+
dataset_state = gr.State({})
|
| 28 |
+
analysis_results_state = gr.State({})
|
| 29 |
+
visualization_state = gr.State({})
|
| 30 |
+
classification_results_state = gr.State({})
|
| 31 |
+
report_state = gr.State({})
|
| 32 |
+
|
| 33 |
+
# Create tabs
|
| 34 |
+
with gr.Tabs() as tabs:
|
| 35 |
+
with gr.Tab("Home", id="home_tab"):
|
| 36 |
+
welcome_msg, about_info, get_started_btn = create_main_screen()
|
| 37 |
+
|
| 38 |
+
with gr.Tab("Dataset Input", id="dataset_tab"):
|
| 39 |
+
dataset_inputs, example_dropdown, load_example_btn, analyze_btn = create_dataset_input()
|
| 40 |
+
|
| 41 |
+
with gr.Tab("Analysis", id="analysis_tab"):
|
| 42 |
+
analysis_options, analysis_params, run_analysis_btn, analysis_output = create_analysis_screen()
|
| 43 |
+
|
| 44 |
+
with gr.Tab("Visualization", id="viz_tab"):
|
| 45 |
+
viz_options, viz_params, viz_output = create_visualization_screen()
|
| 46 |
+
|
| 47 |
+
with gr.Tab("Classification", id="classification_tab"):
|
| 48 |
+
classifier_options, classifier_params, run_classifier_btn, classifier_output = create_classification_screen()
|
| 49 |
+
|
| 50 |
+
with gr.Tab("Report", id="report_tab"):
|
| 51 |
+
report_options, generate_report_btn, llm_analysis_btn, export_btn, report_output = create_report_screen()
|
| 52 |
+
|
| 53 |
+
# Set up event handlers
|
| 54 |
+
|
| 55 |
+
# Main screen navigation
|
| 56 |
+
get_started_btn.click(
|
| 57 |
+
fn=lambda: gr.Tabs.update(selected="dataset_tab"),
|
| 58 |
+
outputs=[tabs]
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# Dataset processing
|
| 62 |
+
analyze_btn.click(
|
| 63 |
+
fn=process_dataset_submission,
|
| 64 |
+
inputs=dataset_inputs,
|
| 65 |
+
outputs=[dataset_state, gr.Tabs.update(selected="analysis_tab")]
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# Load example dataset
|
| 69 |
+
load_example_btn.click(
|
| 70 |
+
fn=load_example_dataset,
|
| 71 |
+
inputs=[example_dropdown],
|
| 72 |
+
outputs=[dataset_inputs]
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
# Analysis
|
| 76 |
+
run_analysis_btn.click(
|
| 77 |
+
fn=process_analysis_request,
|
| 78 |
+
inputs=[dataset_state, analysis_options, analysis_params],
|
| 79 |
+
outputs=[analysis_results_state, analysis_output]
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
# Visualization updates based on analysis results
|
| 83 |
+
tabs.select(
|
| 84 |
+
fn=lambda tab, results: update_visualization(results, viz_options.value, viz_params.value) if tab == "viz_tab" and results else None,
|
| 85 |
+
inputs=["selected", analysis_results_state],
|
| 86 |
+
outputs=[viz_output]
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
viz_options.change(
|
| 90 |
+
fn=update_visualization,
|
| 91 |
+
inputs=[analysis_results_state, viz_options, viz_params],
|
| 92 |
+
outputs=[viz_output]
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
# Classification
|
| 96 |
+
run_classifier_btn.click(
|
| 97 |
+
fn=update_classification_results,
|
| 98 |
+
inputs=[dataset_state, classifier_options, classifier_params],
|
| 99 |
+
outputs=[classification_results_state, classifier_output]
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# Report generation
|
| 103 |
+
generate_report_btn.click(
|
| 104 |
+
fn=lambda results, class_results, options: update_report(create_report(results, class_results), options),
|
| 105 |
+
inputs=[analysis_results_state, classification_results_state, report_options],
|
| 106 |
+
outputs=[report_state, report_output]
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
# LLM meta-analysis
|
| 110 |
+
llm_analysis_btn.click(
|
| 111 |
+
fn=lambda report: update_with_llm_analysis(report, run_llm_analysis(report)),
|
| 112 |
+
inputs=[report_state],
|
| 113 |
+
outputs=[report_state, report_output]
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
# Export report
|
| 117 |
+
export_btn.click(
|
| 118 |
+
fn=lambda report, format: export_report(report, format),
|
| 119 |
+
inputs=[report_state, gr.Dropdown(choices=["md", "html", "pdf"], value="md", label="Export Format")],
|
| 120 |
+
outputs=[]
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
return app
|
| 124 |
+
|
| 125 |
+
def main():
|
| 126 |
+
"""
|
| 127 |
+
Main function to launch the Gradio app
|
| 128 |
+
"""
|
| 129 |
+
# Create necessary directories
|
| 130 |
+
os.makedirs(os.path.join("dataset", "text_datasets"), exist_ok=True)
|
| 131 |
+
os.makedirs("reports", exist_ok=True)
|
| 132 |
+
|
| 133 |
+
# Create and launch app
|
| 134 |
+
app = create_app()
|
| 135 |
+
app.launch(share=True)
|
| 136 |
+
|
| 137 |
+
if __name__ == "__main__":
|
| 138 |
+
main()
|