Ryan commited on
Commit
4973fc0
·
1 Parent(s): 4069671
Files changed (1) hide show
  1. visualization/roberta_visualizer.py +11 -16
visualization/roberta_visualizer.py CHANGED
@@ -63,24 +63,13 @@ def create_sentiment_visualization(analysis_results):
63
 
64
  for model_name in models:
65
  if model_name in sa_data:
66
- model_result = sa_data[model_name]
67
  if model_result is not None:
68
  score = model_result.get("sentiment_score", 0)
69
  label = model_result.get("label", "neutral").capitalize()
70
  else:
71
  score = 0
72
  label = "Neutral"
73
- for model_name in models:
74
- if model_name in sa_data:
75
- model_result = sa_data[model_name]
76
- if model_result is not None:
77
- # Now safely access model_result
78
- score = model_result.get("sentiment_score", 0)
79
- label = model_result.get("label", "neutral").capitalize()
80
- else:
81
- # Provide defaults when model_result is None
82
- score = 0
83
- label = "Neutral"
84
 
85
  # Set color based on sentiment
86
  if label.lower() == "positive":
@@ -103,8 +92,10 @@ def create_sentiment_visualization(analysis_results):
103
  model_scores = []
104
  for model_name in models:
105
  if model_name in sa_data:
106
- score = sa_data[model_name].get("sentiment_score", 0)
107
- model_scores.append((model_name, score))
 
 
108
 
109
  if len(model_scores) >= 2:
110
  gauge_html = "<div style='margin: 20px 0; padding: 15px; background-color: #f8f9fa; border-radius: 5px;'>"
@@ -177,8 +168,12 @@ def create_sentiment_visualization(analysis_results):
177
  model_sentences = {}
178
 
179
  for model_name in models:
180
- if model_name in sa_data and "sentence_scores" in sa_data[model_name] and sa_data[model_name]["sentence_scores"]:
181
- model_sentences[model_name] = sa_data[model_name]["sentence_scores"]
 
 
 
 
182
 
183
  if model_sentences and any(len(sentences) > 0 for sentences in model_sentences.values()):
184
  output_components.append(gr.Markdown("### Sentence-Level Sentiment Analysis"))
 
63
 
64
  for model_name in models:
65
  if model_name in sa_data:
66
+ model_result = sa_data.get(model_name)
67
  if model_result is not None:
68
  score = model_result.get("sentiment_score", 0)
69
  label = model_result.get("label", "neutral").capitalize()
70
  else:
71
  score = 0
72
  label = "Neutral"
 
 
 
 
 
 
 
 
 
 
 
73
 
74
  # Set color based on sentiment
75
  if label.lower() == "positive":
 
92
  model_scores = []
93
  for model_name in models:
94
  if model_name in sa_data:
95
+ model_result = sa_data.get(model_name)
96
+ if model_result is not None:
97
+ score = model_result.get("sentiment_score", 0)
98
+ model_scores.append((model_name, score))
99
 
100
  if len(model_scores) >= 2:
101
  gauge_html = "<div style='margin: 20px 0; padding: 15px; background-color: #f8f9fa; border-radius: 5px;'>"
 
168
  model_sentences = {}
169
 
170
  for model_name in models:
171
+ if model_name in sa_data:
172
+ model_result = sa_data.get(model_name)
173
+ if model_result is not None and "sentence_scores" in model_result:
174
+ sentence_scores = model_result.get("sentence_scores")
175
+ if sentence_scores:
176
+ model_sentences[model_name] = sentence_scores
177
 
178
  if model_sentences and any(len(sentences) > 0 for sentences in model_sentences.values()):
179
  output_components.append(gr.Markdown("### Sentence-Level Sentiment Analysis"))