Spaces:
Sleeping
Sleeping
Ryan
commited on
Commit
·
6528c77
1
Parent(s):
1b8fad7
update
Browse files- app.py +13 -26
- requirements.txt +7 -9
- ui/analysis_screen.py +7 -3
- visualizers/__init__.py +5 -6
- visualizers/bow_visualizer.py +180 -0
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
from ui.dataset_input import create_dataset_input, load_example_dataset
|
3 |
from ui.analysis_screen import create_analysis_screen, process_analysis_request
|
|
|
4 |
import nltk
|
5 |
import os
|
6 |
import json
|
@@ -95,56 +96,42 @@ def create_app():
|
|
95 |
|
96 |
# Analysis Tab
|
97 |
with gr.Tab("Analysis"):
|
98 |
-
# Use create_analysis_screen to get UI components
|
99 |
-
analysis_options, analysis_params, run_analysis_btn, analysis_output, bow_top_slider = create_analysis_screen()
|
100 |
|
101 |
# Define a helper function to extract parameter values and call process_analysis_request
|
102 |
def run_analysis(dataset, selected_analyses, bow_top_value):
|
103 |
# Check if dataset exists
|
104 |
if not dataset or "entries" not in dataset or not dataset["entries"]:
|
105 |
-
|
|
|
106 |
|
107 |
# Create parameters dictionary with the slider value
|
108 |
params = {"bow_top": bow_top_value}
|
109 |
|
110 |
# Call the process_analysis_request function with proper parameters
|
111 |
try:
|
112 |
-
results,
|
113 |
print(f"Analysis completed successfully")
|
114 |
|
115 |
-
#
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
json_str = output["value"].strip()
|
120 |
-
|
121 |
-
# Check if the value is a string that looks like JSON
|
122 |
-
if isinstance(json_str, str) and json_str.startswith("{") and json_str.endswith("}"):
|
123 |
-
# Parse the first JSON string into a Python dictionary
|
124 |
-
parsed_output = json.loads(json_str)
|
125 |
-
|
126 |
-
# Return the cleaned data directly
|
127 |
-
return results, gr.update(visible=True, value=parsed_output)
|
128 |
-
else:
|
129 |
-
return results, output
|
130 |
-
except json.JSONDecodeError as e:
|
131 |
-
print(f"JSON parsing error: {e}")
|
132 |
-
return results, gr.update(visible=True, value={"error": f"Error parsing results: {str(e)}"})
|
133 |
-
else:
|
134 |
-
return results, output
|
135 |
|
136 |
except Exception as e:
|
137 |
import traceback
|
138 |
error_trace = traceback.format_exc()
|
139 |
print(f"Error in analysis: {e}")
|
140 |
print(f"Full traceback: {error_trace}")
|
141 |
-
|
|
|
142 |
|
143 |
# Run analysis with proper parameters
|
144 |
run_analysis_btn.click(
|
145 |
fn=run_analysis,
|
146 |
inputs=[dataset_state, analysis_options, bow_top_slider],
|
147 |
-
outputs=[analysis_results_state, analysis_output]
|
148 |
)
|
149 |
|
150 |
return app
|
|
|
1 |
import gradio as gr
|
2 |
from ui.dataset_input import create_dataset_input, load_example_dataset
|
3 |
from ui.analysis_screen import create_analysis_screen, process_analysis_request
|
4 |
+
from visualization.bow_visualizer import process_and_visualize_analysis
|
5 |
import nltk
|
6 |
import os
|
7 |
import json
|
|
|
96 |
|
97 |
# Analysis Tab
|
98 |
with gr.Tab("Analysis"):
|
99 |
+
# Use create_analysis_screen to get UI components including visualization container
|
100 |
+
analysis_options, analysis_params, run_analysis_btn, analysis_output, bow_top_slider, visualization_container = create_analysis_screen()
|
101 |
|
102 |
# Define a helper function to extract parameter values and call process_analysis_request
|
103 |
def run_analysis(dataset, selected_analyses, bow_top_value):
|
104 |
# Check if dataset exists
|
105 |
if not dataset or "entries" not in dataset or not dataset["entries"]:
|
106 |
+
error_components = [gr.Markdown("❌ **Error:** No dataset provided. Please create a dataset in the Dataset Input tab first.")]
|
107 |
+
return {}, gr.update(visible=False), gr.update(visible=True, value=error_components)
|
108 |
|
109 |
# Create parameters dictionary with the slider value
|
110 |
params = {"bow_top": bow_top_value}
|
111 |
|
112 |
# Call the process_analysis_request function with proper parameters
|
113 |
try:
|
114 |
+
results, _ = process_analysis_request(dataset, selected_analyses, params)
|
115 |
print(f"Analysis completed successfully")
|
116 |
|
117 |
+
# Process and visualize the results
|
118 |
+
visualization_components = process_and_visualize_analysis(results)
|
119 |
+
|
120 |
+
return results, gr.update(visible=False, value=results), gr.update(visible=True, value=visualization_components)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
except Exception as e:
|
123 |
import traceback
|
124 |
error_trace = traceback.format_exc()
|
125 |
print(f"Error in analysis: {e}")
|
126 |
print(f"Full traceback: {error_trace}")
|
127 |
+
error_components = [gr.Markdown(f"❌ **Error during analysis:** {str(e)}")]
|
128 |
+
return {}, gr.update(visible=False), gr.update(visible=True, value=error_components)
|
129 |
|
130 |
# Run analysis with proper parameters
|
131 |
run_analysis_btn.click(
|
132 |
fn=run_analysis,
|
133 |
inputs=[dataset_state, analysis_options, bow_top_slider],
|
134 |
+
outputs=[analysis_results_state, analysis_output, visualization_container]
|
135 |
)
|
136 |
|
137 |
return app
|
requirements.txt
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
-
gradio>=
|
2 |
-
numpy>=1.
|
3 |
-
scikit-learn>=1.
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
markdown>=3.4.3
|
9 |
-
requests>=2.31.0
|
|
|
1 |
+
gradio>=4.0.0
|
2 |
+
numpy>=1.20.0
|
3 |
+
scikit-learn>=1.0.0
|
4 |
+
nltk>=3.6.0
|
5 |
+
pandas>=1.3.0
|
6 |
+
plotly>=5.3.0
|
7 |
+
matplotlib>=3.4.0
|
|
|
|
ui/analysis_screen.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import json
|
|
|
3 |
|
4 |
# Import analysis modules
|
5 |
# Uncomment these when implemented
|
@@ -99,11 +100,14 @@ def create_analysis_screen():
|
|
99 |
# Run analysis button
|
100 |
run_analysis_btn = gr.Button("Run Analysis", variant="primary", size="large")
|
101 |
|
102 |
-
# Analysis output area
|
103 |
analysis_output = gr.JSON(label="Analysis Results", visible=False)
|
|
|
|
|
|
|
104 |
|
105 |
# Return the bow_top_slider directly so app.py can access it
|
106 |
-
return analysis_options, analysis_params, run_analysis_btn, analysis_output, bow_top_slider
|
107 |
|
108 |
def process_analysis_request(dataset, selected_analyses, parameters):
|
109 |
"""
|
@@ -149,4 +153,4 @@ def process_analysis_request(dataset, selected_analyses, parameters):
|
|
149 |
print("Analysis complete - results:", analysis_results)
|
150 |
|
151 |
# Return results and update the output component
|
152 |
-
return analysis_results, gr.update(visible=
|
|
|
1 |
import gradio as gr
|
2 |
import json
|
3 |
+
from visualization.bow_visualizer import process_and_visualize_analysis
|
4 |
|
5 |
# Import analysis modules
|
6 |
# Uncomment these when implemented
|
|
|
100 |
# Run analysis button
|
101 |
run_analysis_btn = gr.Button("Run Analysis", variant="primary", size="large")
|
102 |
|
103 |
+
# Analysis output area - hidden JSON component to store raw results
|
104 |
analysis_output = gr.JSON(label="Analysis Results", visible=False)
|
105 |
+
|
106 |
+
# Visualization components container
|
107 |
+
visualization_container = gr.Column(visible=False)
|
108 |
|
109 |
# Return the bow_top_slider directly so app.py can access it
|
110 |
+
return analysis_options, analysis_params, run_analysis_btn, analysis_output, bow_top_slider, visualization_container
|
111 |
|
112 |
def process_analysis_request(dataset, selected_analyses, parameters):
|
113 |
"""
|
|
|
153 |
print("Analysis complete - results:", analysis_results)
|
154 |
|
155 |
# Return results and update the output component
|
156 |
+
return analysis_results, gr.update(visible=False, value=analysis_results) # Hide the raw JSON
|
visualizers/__init__.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
-
|
2 |
-
|
|
|
3 |
|
4 |
-
|
5 |
-
# Empty file to make the directory a Python package
|
6 |
|
7 |
-
|
8 |
-
# Empty file to make the directory a Python package
|
|
|
1 |
+
"""
|
2 |
+
Visualization components for LLM Response Comparator
|
3 |
+
"""
|
4 |
|
5 |
+
from .bow_visualizer import process_and_visualize_analysis
|
|
|
6 |
|
7 |
+
__all__ = ['process_and_visualize_analysis']
|
|
visualizers/bow_visualizer.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
import plotly.express as px
|
6 |
+
from plotly.subplots import make_subplots
|
7 |
+
import pandas as pd
|
8 |
+
from difflib import SequenceMatcher
|
9 |
+
|
10 |
+
def create_bow_visualization(analysis_results):
|
11 |
+
"""
|
12 |
+
Create visualizations for bag of words analysis results
|
13 |
+
|
14 |
+
Args:
|
15 |
+
analysis_results (dict): Analysis results from the bow analysis
|
16 |
+
|
17 |
+
Returns:
|
18 |
+
list: List of gradio components with visualizations
|
19 |
+
"""
|
20 |
+
# Parse analysis results if it's a string
|
21 |
+
if isinstance(analysis_results, str):
|
22 |
+
try:
|
23 |
+
results = json.loads(analysis_results)
|
24 |
+
except json.JSONDecodeError:
|
25 |
+
return [gr.Markdown("Error parsing analysis results.")]
|
26 |
+
else:
|
27 |
+
results = analysis_results
|
28 |
+
|
29 |
+
output_components = []
|
30 |
+
|
31 |
+
# Check if we have valid results
|
32 |
+
if not results or "analyses" not in results:
|
33 |
+
return [gr.Markdown("No analysis results found.")]
|
34 |
+
|
35 |
+
# Process each prompt
|
36 |
+
for prompt, analyses in results["analyses"].items():
|
37 |
+
output_components.append(gr.Markdown(f"## Analysis of Prompt: \"{prompt}\""))
|
38 |
+
|
39 |
+
# Process Bag of Words analysis if available
|
40 |
+
if "bag_of_words" in analyses:
|
41 |
+
bow_results = analyses["bag_of_words"]
|
42 |
+
|
43 |
+
# Show models being compared
|
44 |
+
models = bow_results.get("models", [])
|
45 |
+
if len(models) >= 2:
|
46 |
+
output_components.append(gr.Markdown(f"### Comparing responses from {models[0]} and {models[1]}"))
|
47 |
+
|
48 |
+
# Get important words for each model
|
49 |
+
important_words = bow_results.get("important_words", {})
|
50 |
+
|
51 |
+
# Prepare data for plotting important words
|
52 |
+
if important_words:
|
53 |
+
for model_name, words in important_words.items():
|
54 |
+
df = pd.DataFrame(words)
|
55 |
+
|
56 |
+
# Create bar chart for top words
|
57 |
+
fig = px.bar(df, x='word', y='count',
|
58 |
+
title=f"Top Words Used by {model_name}",
|
59 |
+
labels={'word': 'Word', 'count': 'Frequency'},
|
60 |
+
height=400)
|
61 |
+
|
62 |
+
# Improve layout
|
63 |
+
fig.update_layout(
|
64 |
+
xaxis_title="Word",
|
65 |
+
yaxis_title="Frequency",
|
66 |
+
xaxis={'categoryorder':'total descending'}
|
67 |
+
)
|
68 |
+
|
69 |
+
output_components.append(gr.Plot(value=fig))
|
70 |
+
|
71 |
+
# Show comparison metrics
|
72 |
+
comparisons = bow_results.get("comparisons", {})
|
73 |
+
if comparisons:
|
74 |
+
for comparison_key, metrics in comparisons.items():
|
75 |
+
output_components.append(gr.Markdown(f"### Similarity Metrics for {comparison_key}"))
|
76 |
+
|
77 |
+
# Format metrics for better display
|
78 |
+
if "jaccard_similarity" in metrics:
|
79 |
+
output_components.append(gr.Markdown(
|
80 |
+
f"- **Jaccard Similarity**: {metrics['jaccard_similarity']:.2f} "
|
81 |
+
f"(measures word overlap between responses)"
|
82 |
+
))
|
83 |
+
|
84 |
+
if "cosine_similarity" in metrics:
|
85 |
+
output_components.append(gr.Markdown(
|
86 |
+
f"- **Cosine Similarity**: {metrics['cosine_similarity']:.2f} "
|
87 |
+
f"(measures how similar the word frequency distributions are)"
|
88 |
+
))
|
89 |
+
|
90 |
+
if "common_word_count" in metrics:
|
91 |
+
output_components.append(gr.Markdown(
|
92 |
+
f"- **Common Words**: {metrics['common_word_count']} words appear in both responses"
|
93 |
+
))
|
94 |
+
|
95 |
+
# Visualize differential words (words with biggest frequency difference)
|
96 |
+
diff_words = bow_results.get("differential_words", [])
|
97 |
+
word_matrix = bow_results.get("word_count_matrix", {})
|
98 |
+
|
99 |
+
if diff_words and word_matrix and len(diff_words) > 0:
|
100 |
+
output_components.append(gr.Markdown("### Words with Biggest Frequency Differences"))
|
101 |
+
|
102 |
+
# Create dataframe for plotting
|
103 |
+
model1, model2 = models[0], models[1]
|
104 |
+
diff_data = []
|
105 |
+
|
106 |
+
for word in diff_words[:15]: # Limit to top 15 for readability
|
107 |
+
if word in word_matrix:
|
108 |
+
counts = word_matrix[word]
|
109 |
+
diff_data.append({
|
110 |
+
"word": word,
|
111 |
+
model1: counts.get(model1, 0),
|
112 |
+
model2: counts.get(model2, 0)
|
113 |
+
})
|
114 |
+
|
115 |
+
if diff_data:
|
116 |
+
diff_df = pd.DataFrame(diff_data)
|
117 |
+
|
118 |
+
# Create grouped bar chart
|
119 |
+
fig = go.Figure()
|
120 |
+
fig.add_trace(go.Bar(
|
121 |
+
x=diff_df['word'],
|
122 |
+
y=diff_df[model1],
|
123 |
+
name=model1,
|
124 |
+
marker_color='indianred'
|
125 |
+
))
|
126 |
+
fig.add_trace(go.Bar(
|
127 |
+
x=diff_df['word'],
|
128 |
+
y=diff_df[model2],
|
129 |
+
name=model2,
|
130 |
+
marker_color='lightsalmon'
|
131 |
+
))
|
132 |
+
|
133 |
+
fig.update_layout(
|
134 |
+
title="Word Frequency Comparison",
|
135 |
+
xaxis_title="Word",
|
136 |
+
yaxis_title="Frequency",
|
137 |
+
barmode='group',
|
138 |
+
height=500
|
139 |
+
)
|
140 |
+
|
141 |
+
output_components.append(gr.Plot(value=fig))
|
142 |
+
|
143 |
+
# If no components were added, show a message
|
144 |
+
if len(output_components) <= 1:
|
145 |
+
output_components.append(gr.Markdown("No detailed Bag of Words analysis found in results."))
|
146 |
+
|
147 |
+
return output_components
|
148 |
+
|
149 |
+
def process_and_visualize_analysis(analysis_results):
|
150 |
+
"""
|
151 |
+
Process analysis results and create visualizations
|
152 |
+
|
153 |
+
Args:
|
154 |
+
analysis_results (dict): Analysis results
|
155 |
+
|
156 |
+
Returns:
|
157 |
+
list: List of gradio components with visualizations
|
158 |
+
"""
|
159 |
+
if not analysis_results:
|
160 |
+
return [gr.Markdown("No analysis results available. Please run an analysis first.")]
|
161 |
+
|
162 |
+
all_components = []
|
163 |
+
|
164 |
+
# Display the JSON output in a collapsible section for debugging
|
165 |
+
json_text = json.dumps(analysis_results, indent=2)
|
166 |
+
all_components.append(gr.Markdown("### Raw Analysis Results (Expandable)"))
|
167 |
+
all_components.append(gr.Markdown("<details><summary>Click to view raw JSON results</summary>\n\n```json\n" + json_text + "\n```\n\n</details>"))
|
168 |
+
|
169 |
+
# Check if bag of words analysis is present in any prompt's results
|
170 |
+
has_bow = False
|
171 |
+
for prompt_results in analysis_results.get("analyses", {}).values():
|
172 |
+
if "bag_of_words" in prompt_results:
|
173 |
+
has_bow = True
|
174 |
+
break
|
175 |
+
|
176 |
+
# Create visualizations for Bag of Words if present
|
177 |
+
if has_bow:
|
178 |
+
all_components.extend(create_bow_visualization(analysis_results))
|
179 |
+
|
180 |
+
return all_components
|