Ryan commited on
Commit
95d7f60
·
1 Parent(s): 7731b47
Files changed (1) hide show
  1. ui/roberta_screen.py +125 -0
ui/roberta_screen.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ UI components for RoBERTa sentiment analysis screen
3
+ """
4
+ import gradio as gr
5
+ from processors.roberta_analysis import compare_sentiment_roberta
6
+
7
+ def create_roberta_screen():
8
+ """
9
+ Create the RoBERTa sentiment analysis screen components
10
+
11
+ Returns:
12
+ tuple: (run_roberta_btn, roberta_output, other components...)
13
+ """
14
+ with gr.Column() as roberta_screen:
15
+ gr.Markdown("## RoBERTa Sentiment Analysis")
16
+ gr.Markdown("""
17
+ This tab uses the RoBERTa transformer model to perform sentiment analysis on the LLM responses
18
+ and compare their emotional tones. RoBERTa was trained on a diverse dataset and can detect subtle
19
+ differences in sentiment that simpler rule-based classifiers might miss.
20
+
21
+ Click 'Run Sentiment Analysis' to analyze your dataset.
22
+ """)
23
+
24
+ with gr.Row():
25
+ with gr.Column(scale=1):
26
+ # Analysis options (expandable in future)
27
+ with gr.Accordion("Advanced Options", open=False):
28
+ sentence_level = gr.Checkbox(
29
+ value=True,
30
+ label="Perform sentence-level analysis",
31
+ info="Analyze sentiment at the sentence level for more detailed results"
32
+ )
33
+
34
+ visualization_style = gr.Radio(
35
+ choices=["Standard", "Detailed"],
36
+ value="Standard",
37
+ label="Visualization Style",
38
+ info="Standard is more concise, Detailed shows more information"
39
+ )
40
+
41
+ with gr.Column(scale=1):
42
+ # Run button in its own column for better visibility
43
+ run_roberta_btn = gr.Button("Run Sentiment Analysis", variant="primary", size="large")
44
+
45
+ # Hidden output to store raw analysis results
46
+ roberta_output = gr.JSON(label="Sentiment Analysis Results", visible=False)
47
+
48
+ # Pre-create visualization components (all initially hidden)
49
+ visualization_container = gr.Markdown(visible=False)
50
+ status_message = gr.Markdown(visible=False)
51
+
52
+ return run_roberta_btn, roberta_output, sentence_level, visualization_style, visualization_container, status_message
53
+
54
+ def process_roberta_request(dataset, sentence_level=True, visualization_style="Standard"):
55
+ """
56
+ Process the RoBERTa sentiment analysis request
57
+
58
+ Args:
59
+ dataset (dict): The input dataset
60
+ sentence_level (bool): Whether to perform sentence-level analysis
61
+ visualization_style (str): Visualization style preference
62
+
63
+ Returns:
64
+ dict: Analysis results
65
+ """
66
+ if not dataset or "entries" not in dataset or not dataset["entries"]:
67
+ return {"error": "No dataset loaded. Please create or load a dataset first."}
68
+
69
+ # Initialize the results structure
70
+ results = {"analyses": {}}
71
+
72
+ # Get the prompt text from the first entry
73
+ prompt_text = dataset["entries"][0].get("prompt", "")
74
+ if not prompt_text:
75
+ return {"error": "No prompt found in dataset"}
76
+
77
+ # Initialize the analysis container for this prompt
78
+ results["analyses"][prompt_text] = {}
79
+
80
+ # Get model names and responses
81
+ model1_name = dataset["entries"][0].get("model", "Model 1")
82
+ model2_name = dataset["entries"][1].get("model", "Model 2")
83
+
84
+ model1_response = dataset["entries"][0].get("response", "")
85
+ model2_response = dataset["entries"][1].get("response", "")
86
+
87
+ try:
88
+ # Perform RoBERTa sentiment analysis
89
+ print("Starting RoBERTa sentiment analysis...")
90
+
91
+ sentiment_results = compare_sentiment_roberta(
92
+ texts=[model1_response, model2_response],
93
+ model_names=[model1_name, model2_name]
94
+ )
95
+
96
+ # Store the results
97
+ results["analyses"][prompt_text]["roberta_sentiment"] = sentiment_results
98
+
99
+ # Add metadata about the analysis
100
+ results["analyses"][prompt_text]["roberta_sentiment"]["metadata"] = {
101
+ "sentence_level": sentence_level,
102
+ "visualization_style": visualization_style
103
+ }
104
+
105
+ return results
106
+
107
+ except Exception as e:
108
+ import traceback
109
+ error_msg = f"Error in RoBERTa sentiment analysis: {str(e)}\n{traceback.format_exc()}"
110
+ print(error_msg)
111
+
112
+ # Return error information
113
+ return {
114
+ "error": str(e),
115
+ "traceback": traceback.format_exc(),
116
+ "analyses": {
117
+ prompt_text: {
118
+ "roberta_sentiment": {
119
+ "error": str(e),
120
+ "models": [model1_name, model2_name],
121
+ "message": "RoBERTa sentiment analysis failed. Try again or use a different analysis method."
122
+ }
123
+ }
124
+ }
125
+ }