Spaces:
Sleeping
Sleeping
Ryan
commited on
Commit
·
c435293
1
Parent(s):
a800293
update
Browse files- app.py +441 -395
- processors/text_classifiers.py +152 -0
- ui/analysis_screen.py +130 -168
app.py
CHANGED
@@ -63,346 +63,408 @@ def create_app():
|
|
63 |
|
64 |
# Dataset Input Tab
|
65 |
with gr.Tab("Dataset Input"):
|
66 |
-
|
67 |
-
|
68 |
-
#
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
load_example_btn.click(
|
73 |
-
fn=load_example_dataset,
|
74 |
-
inputs=[example_dropdown],
|
75 |
-
outputs=[prompt, response1, model1, response2, model2] # Update all field values
|
76 |
-
)
|
77 |
-
|
78 |
-
# Save dataset to state and update status
|
79 |
-
def create_dataset(p, r1, m1, r2, m2):
|
80 |
-
if not p or not r1 or not r2:
|
81 |
-
return {}, "❌ **Error:** Please fill in at least the prompt and both responses"
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
}
|
89 |
-
return dataset, "✅ **Dataset created successfully!** You can now go to the Analysis tab"
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
if not dataset or "entries" not in dataset or not dataset["entries"]:
|
128 |
-
return (
|
129 |
-
{}, # analysis_results_state
|
130 |
-
False, # analysis_output visibility
|
131 |
-
False, # visualization_area_visible
|
132 |
-
gr.update(visible=False), # analysis_title
|
133 |
-
gr.update(visible=False), # prompt_title
|
134 |
-
gr.update(visible=False), # models_compared
|
135 |
-
gr.update(visible=False), # model1_title
|
136 |
-
gr.update(visible=False), # model1_words
|
137 |
-
gr.update(visible=False), # model2_title
|
138 |
-
gr.update(visible=False), # model2_words
|
139 |
-
gr.update(visible=False), # similarity_metrics_title
|
140 |
-
gr.update(visible=False), # similarity_metrics
|
141 |
-
True, # status_message_visible
|
142 |
-
gr.update(visible=True, value="❌ **Error:** No dataset loaded. Please create or load a dataset first.") # status_message
|
143 |
-
)
|
144 |
-
|
145 |
-
parameters = {
|
146 |
-
"bow_top": bow_top,
|
147 |
-
"ngram_n": ngram_n,
|
148 |
-
"ngram_top": ngram_top,
|
149 |
-
"topic_count": topic_count
|
150 |
-
}
|
151 |
-
print(f"Running analysis with selected type: {selected_analysis}")
|
152 |
-
print("Parameters:", parameters)
|
153 |
-
|
154 |
-
# Process the analysis request - note we're now passing selected_analysis as a string, not a list
|
155 |
-
analysis_results, _ = process_analysis_request(dataset, selected_analysis, parameters)
|
156 |
-
|
157 |
-
# If there's an error or no results
|
158 |
-
if not analysis_results or "analyses" not in analysis_results or not analysis_results["analyses"]:
|
159 |
-
return (
|
160 |
-
analysis_results,
|
161 |
-
False,
|
162 |
-
False,
|
163 |
-
gr.update(visible=False),
|
164 |
-
gr.update(visible=False),
|
165 |
-
gr.update(visible=False),
|
166 |
-
gr.update(visible=False),
|
167 |
-
gr.update(visible=False),
|
168 |
-
gr.update(visible=False),
|
169 |
-
gr.update(visible=False),
|
170 |
-
gr.update(visible=False),
|
171 |
-
gr.update(visible=False),
|
172 |
-
True,
|
173 |
-
gr.update(visible=True, value="❌ **No results found.** Try a different analysis option.")
|
174 |
-
)
|
175 |
-
|
176 |
-
# Extract information to display in components
|
177 |
-
prompt = list(analysis_results["analyses"].keys())[0]
|
178 |
-
analyses = analysis_results["analyses"][prompt]
|
179 |
-
|
180 |
-
# Initialize visualization components visibilities and contents
|
181 |
-
visualization_area_visible = False
|
182 |
-
prompt_title_visible = False
|
183 |
-
prompt_title_value = ""
|
184 |
-
models_compared_visible = False
|
185 |
-
models_compared_value = ""
|
186 |
-
|
187 |
-
model1_title_visible = False
|
188 |
-
model1_title_value = ""
|
189 |
-
model1_words_visible = False
|
190 |
-
model1_words_value = ""
|
191 |
-
|
192 |
-
model2_title_visible = False
|
193 |
-
model2_title_value = ""
|
194 |
-
model2_words_visible = False
|
195 |
-
model2_words_value = ""
|
196 |
-
|
197 |
-
similarity_title_visible = False
|
198 |
-
similarity_metrics_visible = False
|
199 |
-
similarity_metrics_value = ""
|
200 |
-
|
201 |
-
# Check for messages from placeholder analyses
|
202 |
-
if "message" in analyses:
|
203 |
-
return (
|
204 |
-
analysis_results,
|
205 |
-
False,
|
206 |
-
False,
|
207 |
-
gr.update(visible=False),
|
208 |
-
gr.update(visible=False),
|
209 |
-
gr.update(visible=False),
|
210 |
-
gr.update(visible=False),
|
211 |
-
gr.update(visible=False),
|
212 |
-
gr.update(visible=False),
|
213 |
-
gr.update(visible=False),
|
214 |
-
gr.update(visible=False),
|
215 |
-
gr.update(visible=False),
|
216 |
-
True,
|
217 |
-
gr.update(visible=True, value=f"ℹ️ **{analyses['message']}**")
|
218 |
-
)
|
219 |
-
|
220 |
-
# Check for Bag of Words analysis
|
221 |
-
if "bag_of_words" in analyses:
|
222 |
-
visualization_area_visible = True
|
223 |
-
bow_results = analyses["bag_of_words"]
|
224 |
-
models = bow_results.get("models", [])
|
225 |
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
-
if
|
241 |
-
|
242 |
-
|
243 |
|
244 |
-
|
245 |
-
|
246 |
-
model1_words_value = ", ".join(word_list)
|
247 |
-
|
248 |
-
if model2_name in important_words:
|
249 |
-
model2_title_visible = True
|
250 |
-
model2_title_value = f"#### Top Words Used by {model2_name}"
|
251 |
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
# Format similarity metrics
|
257 |
-
comparisons = bow_results.get("comparisons", {})
|
258 |
-
comparison_key = f"{model1_name} vs {model2_name}"
|
259 |
-
|
260 |
-
if comparison_key in comparisons:
|
261 |
-
metrics = comparisons[comparison_key]
|
262 |
-
cosine = metrics.get("cosine_similarity", 0)
|
263 |
-
jaccard = metrics.get("jaccard_similarity", 0)
|
264 |
-
semantic = metrics.get("semantic_similarity", 0)
|
265 |
-
common_words = metrics.get("common_word_count", 0)
|
266 |
|
267 |
-
|
268 |
-
|
269 |
-
similarity_metrics_value = f"""
|
270 |
-
- **Cosine Similarity**: {cosine:.2f} (higher means more similar word frequency patterns)
|
271 |
-
- **Jaccard Similarity**: {jaccard:.2f} (higher means more word overlap)
|
272 |
-
- **Semantic Similarity**: {semantic:.2f} (higher means more similar meaning)
|
273 |
-
- **Common Words**: {common_words} words appear in both responses
|
274 |
-
"""
|
275 |
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
if len(models) >= 2:
|
285 |
-
prompt_title_visible = True
|
286 |
-
prompt_title_value = f"## Analysis of Prompt: \"{prompt[:100]}...\""
|
287 |
-
|
288 |
-
models_compared_visible = True
|
289 |
-
models_compared_value = f"### {size_name} Analysis: Comparing responses from {models[0]} and {models[1]}"
|
290 |
-
|
291 |
-
# Extract and format information for display
|
292 |
-
model1_name = models[0]
|
293 |
-
model2_name = models[1]
|
294 |
-
|
295 |
-
# Format important n-grams for each model
|
296 |
-
important_ngrams = ngram_results.get("important_ngrams", {})
|
297 |
-
|
298 |
-
if model1_name in important_ngrams:
|
299 |
-
model1_title_visible = True
|
300 |
-
model1_title_value = f"#### Top {size_name} Used by {model1_name}"
|
301 |
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
|
310 |
-
|
311 |
-
|
312 |
-
model2_words_value = ", ".join(ngram_list)
|
313 |
-
|
314 |
-
# Format similarity metrics if available
|
315 |
-
if "comparisons" in ngram_results:
|
316 |
comparison_key = f"{model1_name} vs {model2_name}"
|
317 |
-
|
318 |
-
if comparison_key in
|
319 |
-
metrics =
|
320 |
-
|
|
|
|
|
|
|
321 |
|
322 |
similarity_title_visible = True
|
323 |
similarity_metrics_visible = True
|
324 |
similarity_metrics_value = f"""
|
325 |
-
- **
|
|
|
|
|
|
|
326 |
"""
|
327 |
-
|
328 |
-
# Check for Topic Modeling analysis
|
329 |
-
if "topic_modeling" in analyses:
|
330 |
-
visualization_area_visible = True
|
331 |
-
topic_results = analyses["topic_modeling"]
|
332 |
-
models = topic_results.get("models", [])
|
333 |
-
method = topic_results.get("method", "lda").upper()
|
334 |
-
n_topics = topic_results.get("n_topics", 3)
|
335 |
-
|
336 |
-
if len(models) >= 2:
|
337 |
-
prompt_title_visible = True
|
338 |
-
prompt_title_value = f"## Analysis of Prompt: \"{prompt[:100]}...\""
|
339 |
-
|
340 |
-
models_compared_visible = True
|
341 |
-
models_compared_value = f"### Topic Modeling Analysis ({method}, {n_topics} topics)"
|
342 |
-
|
343 |
-
# Extract and format topic information
|
344 |
-
topics = topic_results.get("topics", [])
|
345 |
-
|
346 |
-
if topics:
|
347 |
-
# Format topic info for display
|
348 |
-
topic_info = []
|
349 |
-
for topic in topics[:3]: # Show first 3 topics
|
350 |
-
topic_id = topic.get("id", 0)
|
351 |
-
words = topic.get("words", [])[:5] # Top 5 words per topic
|
352 |
|
353 |
-
|
354 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
|
356 |
-
|
|
|
|
|
|
|
357 |
model1_title_visible = True
|
358 |
-
model1_title_value = "####
|
|
|
|
|
359 |
model1_words_visible = True
|
360 |
-
model1_words_value = "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
|
362 |
-
|
363 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
364 |
|
365 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
model1_name = models[0]
|
367 |
model2_name = models[1]
|
368 |
|
369 |
-
#
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
|
|
|
|
374 |
|
375 |
-
|
376 |
-
|
377 |
-
dist2 = model_topics[model2_name]
|
378 |
|
379 |
-
|
380 |
-
**{model1_name}**:
|
|
|
|
|
|
|
381 |
|
382 |
-
**{model2_name}**:
|
|
|
|
|
|
|
383 |
"""
|
384 |
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
if comparison_key in comparisons:
|
391 |
-
metrics = comparisons[comparison_key]
|
392 |
-
js_div = metrics.get("js_divergence", 0)
|
393 |
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
|
400 |
-
|
401 |
-
|
|
|
|
|
|
|
402 |
return (
|
403 |
-
|
404 |
-
|
405 |
-
False,
|
406 |
gr.update(visible=False),
|
407 |
gr.update(visible=False),
|
408 |
gr.update(visible=False),
|
@@ -412,103 +474,87 @@ def create_app():
|
|
412 |
gr.update(visible=False),
|
413 |
gr.update(visible=False),
|
414 |
gr.update(visible=False),
|
415 |
-
True,
|
416 |
-
gr.update(visible=True, value="❌ **
|
417 |
)
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
gr.update(visible=model2_title_visible, value=model2_title_value), # model2_title
|
430 |
-
gr.update(visible=model2_words_visible, value=model2_words_value), # model2_words
|
431 |
-
gr.update(visible=similarity_title_visible), # similarity_metrics_title
|
432 |
-
gr.update(visible=similarity_metrics_visible, value=similarity_metrics_value), # similarity_metrics
|
433 |
-
False, # status_message_visible
|
434 |
-
gr.update(visible=False) # status_message
|
435 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
436 |
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
|
|
|
|
441 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
442 |
return (
|
443 |
-
|
444 |
-
|
445 |
-
False, # visualization_area_visible
|
446 |
-
gr.update(visible=False),
|
447 |
-
gr.update(visible=False),
|
448 |
-
gr.update(visible=False),
|
449 |
-
gr.update(visible=False),
|
450 |
-
gr.update(visible=False),
|
451 |
-
gr.update(visible=False),
|
452 |
-
gr.update(visible=False),
|
453 |
-
gr.update(visible=False),
|
454 |
-
gr.update(visible=False),
|
455 |
-
True, # status_message_visible
|
456 |
-
gr.update(visible=True, value=f"❌ **Error during analysis:**\n\n```\n{str(e)}\n```") # status_message
|
457 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
458 |
|
|
|
459 |
def update_visibility(viz_visible, status_visible):
|
460 |
-
|
461 |
-
gr.update(visible=viz_visible), # analysis_title
|
462 |
-
gr.update(visible=viz_visible), # prompt_title
|
463 |
-
gr.update(visible=viz_visible), # models_compared
|
464 |
-
gr.update(visible=viz_visible), # model1_title
|
465 |
-
gr.update(visible=viz_visible), # model1_words
|
466 |
-
gr.update(visible=viz_visible), # model2_title
|
467 |
-
gr.update(visible=viz_visible), # model2_words
|
468 |
-
gr.update(visible=viz_visible), # similarity_metrics_title
|
469 |
-
gr.update(visible=viz_visible), # similarity_metrics
|
470 |
-
gr.update(visible=status_visible) # status_message
|
471 |
-
]
|
472 |
-
|
473 |
-
# Connect visibility checkboxes to update function
|
474 |
-
visualization_area_visible.change(
|
475 |
-
fn=update_visibility,
|
476 |
-
inputs=[visualization_area_visible, status_message_visible],
|
477 |
-
outputs=[
|
478 |
-
analysis_title,
|
479 |
-
prompt_title,
|
480 |
-
models_compared,
|
481 |
-
model1_title,
|
482 |
-
model1_words,
|
483 |
-
model2_title,
|
484 |
-
model2_words,
|
485 |
-
similarity_metrics_title,
|
486 |
-
similarity_metrics,
|
487 |
-
status_message
|
488 |
-
]
|
489 |
-
)
|
490 |
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
|
513 |
return app
|
514 |
|
|
|
63 |
|
64 |
# Dataset Input Tab
|
65 |
with gr.Tab("Dataset Input"):
|
66 |
+
# ...existing code...
|
67 |
+
|
68 |
+
# Analysis Tab
|
69 |
+
with gr.Tab("Analysis"):
|
70 |
+
# Use create_analysis_screen to get UI components including visualization container
|
71 |
+
analysis_options, analysis_params, run_analysis_btn, analysis_output, bow_top_slider, ngram_n, ngram_top, topic_count = create_analysis_screen()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
# Pre-create visualization components (initially hidden)
|
74 |
+
visualization_area_visible = gr.Checkbox(value=False, visible=False, label="Visualization Visible")
|
75 |
+
analysis_title = gr.Markdown("## Analysis Results", visible=False)
|
76 |
+
prompt_title = gr.Markdown(visible=False)
|
77 |
+
models_compared = gr.Markdown(visible=False)
|
|
|
|
|
78 |
|
79 |
+
# Container for model 1 words
|
80 |
+
model1_title = gr.Markdown(visible=False)
|
81 |
+
model1_words = gr.Markdown(visible=False)
|
82 |
+
|
83 |
+
# Container for model 2 words
|
84 |
+
model2_title = gr.Markdown(visible=False)
|
85 |
+
model2_words = gr.Markdown(visible=False)
|
86 |
+
|
87 |
+
# Similarity metrics
|
88 |
+
similarity_metrics_title = gr.Markdown("### Similarity Metrics", visible=False)
|
89 |
+
similarity_metrics = gr.Markdown(visible=False)
|
90 |
+
|
91 |
+
# Status or error message area
|
92 |
+
status_message_visible = gr.Checkbox(value=False, visible=False, label="Status Message Visible")
|
93 |
+
status_message = gr.Markdown(visible=False)
|
94 |
+
|
95 |
+
# Define a helper function to extract parameter values and run the analysis
|
96 |
+
def run_analysis(dataset, selected_analysis, bow_top, ngram_n, ngram_top, topic_count):
|
97 |
+
try:
|
98 |
+
if not dataset or "entries" not in dataset or not dataset["entries"]:
|
99 |
+
return (
|
100 |
+
{}, # analysis_results_state
|
101 |
+
False, # analysis_output visibility
|
102 |
+
False, # visualization_area_visible
|
103 |
+
gr.update(visible=False), # analysis_title
|
104 |
+
gr.update(visible=False), # prompt_title
|
105 |
+
gr.update(visible=False), # models_compared
|
106 |
+
gr.update(visible=False), # model1_title
|
107 |
+
gr.update(visible=False), # model1_words
|
108 |
+
gr.update(visible=False), # model2_title
|
109 |
+
gr.update(visible=False), # model2_words
|
110 |
+
gr.update(visible=False), # similarity_metrics_title
|
111 |
+
gr.update(visible=False), # similarity_metrics
|
112 |
+
True, # status_message_visible
|
113 |
+
gr.update(visible=True, value="❌ **Error:** No dataset loaded. Please create or load a dataset first.") # status_message
|
114 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
+
parameters = {
|
117 |
+
"bow_top": bow_top,
|
118 |
+
"ngram_n": ngram_n,
|
119 |
+
"ngram_top": ngram_top,
|
120 |
+
"topic_count": topic_count
|
121 |
+
}
|
122 |
+
print(f"Running analysis with selected type: {selected_analysis}")
|
123 |
+
print("Parameters:", parameters)
|
124 |
+
|
125 |
+
# Process the analysis request - passing selected_analysis as a string
|
126 |
+
analysis_results, _ = process_analysis_request(dataset, selected_analysis, parameters)
|
127 |
+
|
128 |
+
# If there's an error or no results
|
129 |
+
if not analysis_results or "analyses" not in analysis_results or not analysis_results["analyses"]:
|
130 |
+
return (
|
131 |
+
analysis_results,
|
132 |
+
False,
|
133 |
+
False,
|
134 |
+
gr.update(visible=False),
|
135 |
+
gr.update(visible=False),
|
136 |
+
gr.update(visible=False),
|
137 |
+
gr.update(visible=False),
|
138 |
+
gr.update(visible=False),
|
139 |
+
gr.update(visible=False),
|
140 |
+
gr.update(visible=False),
|
141 |
+
gr.update(visible=False),
|
142 |
+
gr.update(visible=False),
|
143 |
+
True,
|
144 |
+
gr.update(visible=True, value="❌ **No results found.** Try a different analysis option.")
|
145 |
+
)
|
146 |
+
|
147 |
+
# Extract information to display in components
|
148 |
+
prompt = list(analysis_results["analyses"].keys())[0]
|
149 |
+
analyses = analysis_results["analyses"][prompt]
|
150 |
+
|
151 |
+
# Initialize visualization components visibilities and contents
|
152 |
+
visualization_area_visible = False
|
153 |
+
prompt_title_visible = False
|
154 |
+
prompt_title_value = ""
|
155 |
+
models_compared_visible = False
|
156 |
+
models_compared_value = ""
|
157 |
+
|
158 |
+
model1_title_visible = False
|
159 |
+
model1_title_value = ""
|
160 |
+
model1_words_visible = False
|
161 |
+
model1_words_value = ""
|
162 |
+
|
163 |
+
model2_title_visible = False
|
164 |
+
model2_title_value = ""
|
165 |
+
model2_words_visible = False
|
166 |
+
model2_words_value = ""
|
167 |
+
|
168 |
+
similarity_title_visible = False
|
169 |
+
similarity_metrics_visible = False
|
170 |
+
similarity_metrics_value = ""
|
171 |
+
|
172 |
+
# Check for messages from placeholder analyses
|
173 |
+
if "message" in analyses:
|
174 |
+
return (
|
175 |
+
analysis_results,
|
176 |
+
False,
|
177 |
+
False,
|
178 |
+
gr.update(visible=False),
|
179 |
+
gr.update(visible=False),
|
180 |
+
gr.update(visible=False),
|
181 |
+
gr.update(visible=False),
|
182 |
+
gr.update(visible=False),
|
183 |
+
gr.update(visible=False),
|
184 |
+
gr.update(visible=False),
|
185 |
+
gr.update(visible=False),
|
186 |
+
gr.update(visible=False),
|
187 |
+
True,
|
188 |
+
gr.update(visible=True, value=f"ℹ️ **{analyses['message']}**")
|
189 |
+
)
|
190 |
+
|
191 |
+
# Process based on the selected analysis type
|
192 |
+
if selected_analysis == "Bag of Words" and "bag_of_words" in analyses:
|
193 |
+
visualization_area_visible = True
|
194 |
+
bow_results = analyses["bag_of_words"]
|
195 |
+
models = bow_results.get("models", [])
|
196 |
|
197 |
+
if len(models) >= 2:
|
198 |
+
prompt_title_visible = True
|
199 |
+
prompt_title_value = f"## Analysis of Prompt: \"{prompt[:100]}...\""
|
200 |
|
201 |
+
models_compared_visible = True
|
202 |
+
models_compared_value = f"### Comparing responses from {models[0]} and {models[1]}"
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
+
# Extract and format information for display
|
205 |
+
model1_name = models[0]
|
206 |
+
model2_name = models[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
|
208 |
+
# Format important words for each model
|
209 |
+
important_words = bow_results.get("important_words", {})
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
+
if model1_name in important_words:
|
212 |
+
model1_title_visible = True
|
213 |
+
model1_title_value = f"#### Top Words Used by {model1_name}"
|
214 |
+
|
215 |
+
word_list = [f"**{item['word']}** ({item['count']})" for item in important_words[model1_name][:10]]
|
216 |
+
model1_words_visible = True
|
217 |
+
model1_words_value = ", ".join(word_list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
+
if model2_name in important_words:
|
220 |
+
model2_title_visible = True
|
221 |
+
model2_title_value = f"#### Top Words Used by {model2_name}"
|
222 |
+
|
223 |
+
word_list = [f"**{item['word']}** ({item['count']})" for item in important_words[model2_name][:10]]
|
224 |
+
model2_words_visible = True
|
225 |
+
model2_words_value = ", ".join(word_list)
|
226 |
|
227 |
+
# Format similarity metrics
|
228 |
+
comparisons = bow_results.get("comparisons", {})
|
|
|
|
|
|
|
|
|
229 |
comparison_key = f"{model1_name} vs {model2_name}"
|
230 |
+
|
231 |
+
if comparison_key in comparisons:
|
232 |
+
metrics = comparisons[comparison_key]
|
233 |
+
cosine = metrics.get("cosine_similarity", 0)
|
234 |
+
jaccard = metrics.get("jaccard_similarity", 0)
|
235 |
+
semantic = metrics.get("semantic_similarity", 0)
|
236 |
+
common_words = metrics.get("common_word_count", 0)
|
237 |
|
238 |
similarity_title_visible = True
|
239 |
similarity_metrics_visible = True
|
240 |
similarity_metrics_value = f"""
|
241 |
+
- **Cosine Similarity**: {cosine:.2f} (higher means more similar word frequency patterns)
|
242 |
+
- **Jaccard Similarity**: {jaccard:.2f} (higher means more word overlap)
|
243 |
+
- **Semantic Similarity**: {semantic:.2f} (higher means more similar meaning)
|
244 |
+
- **Common Words**: {common_words} words appear in both responses
|
245 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
|
247 |
+
# Check for N-gram analysis
|
248 |
+
elif selected_analysis == "N-gram Analysis" and "ngram_analysis" in analyses:
|
249 |
+
visualization_area_visible = True
|
250 |
+
ngram_results = analyses["ngram_analysis"]
|
251 |
+
models = ngram_results.get("models", [])
|
252 |
+
ngram_size = ngram_results.get("ngram_size", 2)
|
253 |
+
size_name = "Unigrams" if ngram_size == 1 else f"{ngram_size}-grams"
|
254 |
+
|
255 |
+
if len(models) >= 2:
|
256 |
+
prompt_title_visible = True
|
257 |
+
prompt_title_value = f"## Analysis of Prompt: \"{prompt[:100]}...\""
|
258 |
+
|
259 |
+
models_compared_visible = True
|
260 |
+
models_compared_value = f"### {size_name} Analysis: Comparing responses from {models[0]} and {models[1]}"
|
261 |
+
|
262 |
+
# Extract and format information for display
|
263 |
+
model1_name = models[0]
|
264 |
+
model2_name = models[1]
|
265 |
|
266 |
+
# Format important n-grams for each model
|
267 |
+
important_ngrams = ngram_results.get("important_ngrams", {})
|
268 |
+
|
269 |
+
if model1_name in important_ngrams:
|
270 |
model1_title_visible = True
|
271 |
+
model1_title_value = f"#### Top {size_name} Used by {model1_name}"
|
272 |
+
|
273 |
+
ngram_list = [f"**{item['ngram']}** ({item['count']})" for item in important_ngrams[model1_name][:10]]
|
274 |
model1_words_visible = True
|
275 |
+
model1_words_value = ", ".join(ngram_list)
|
276 |
+
|
277 |
+
if model2_name in important_ngrams:
|
278 |
+
model2_title_visible = True
|
279 |
+
model2_title_value = f"#### Top {size_name} Used by {model2_name}"
|
280 |
+
|
281 |
+
ngram_list = [f"**{item['ngram']}** ({item['count']})" for item in important_ngrams[model2_name][:10]]
|
282 |
+
model2_words_visible = True
|
283 |
+
model2_words_value = ", ".join(ngram_list)
|
284 |
+
|
285 |
+
# Format similarity metrics if available
|
286 |
+
if "comparisons" in ngram_results:
|
287 |
+
comparison_key = f"{model1_name} vs {model2_name}"
|
288 |
+
|
289 |
+
if comparison_key in ngram_results["comparisons"]:
|
290 |
+
metrics = ngram_results["comparisons"][comparison_key]
|
291 |
+
common_count = metrics.get("common_ngram_count", 0)
|
292 |
+
|
293 |
+
similarity_title_visible = True
|
294 |
+
similarity_metrics_visible = True
|
295 |
+
similarity_metrics_value = f"""
|
296 |
+
- **Common {size_name}**: {common_count} {size_name.lower()} appear in both responses
|
297 |
+
"""
|
298 |
+
|
299 |
+
# Check for Topic Modeling analysis
|
300 |
+
elif selected_analysis == "Topic Modeling" and "topic_modeling" in analyses:
|
301 |
+
visualization_area_visible = True
|
302 |
+
topic_results = analyses["topic_modeling"]
|
303 |
+
models = topic_results.get("models", [])
|
304 |
+
method = topic_results.get("method", "lda").upper()
|
305 |
+
n_topics = topic_results.get("n_topics", 3)
|
306 |
|
307 |
+
if len(models) >= 2:
|
308 |
+
prompt_title_visible = True
|
309 |
+
prompt_title_value = f"## Analysis of Prompt: \"{prompt[:100]}...\""
|
310 |
+
|
311 |
+
models_compared_visible = True
|
312 |
+
models_compared_value = f"### Topic Modeling Analysis ({method}, {n_topics} topics)"
|
313 |
+
|
314 |
+
# Extract and format topic information
|
315 |
+
topics = topic_results.get("topics", [])
|
316 |
+
|
317 |
+
if topics:
|
318 |
+
# Format topic info for display
|
319 |
+
topic_info = []
|
320 |
+
for topic in topics[:3]: # Show first 3 topics
|
321 |
+
topic_id = topic.get("id", 0)
|
322 |
+
words = topic.get("words", [])[:5] # Top 5 words per topic
|
323 |
+
|
324 |
+
if words:
|
325 |
+
topic_info.append(f"**Topic {topic_id+1}**: {', '.join(words)}")
|
326 |
+
|
327 |
+
if topic_info:
|
328 |
+
model1_title_visible = True
|
329 |
+
model1_title_value = "#### Discovered Topics"
|
330 |
+
model1_words_visible = True
|
331 |
+
model1_words_value = "\n".join(topic_info)
|
332 |
+
|
333 |
+
# Get topic distributions for models
|
334 |
+
model_topics = topic_results.get("model_topics", {})
|
335 |
+
|
336 |
+
if model_topics:
|
337 |
+
model1_name = models[0]
|
338 |
+
model2_name = models[1]
|
339 |
+
|
340 |
+
# Format topic distribution info
|
341 |
+
if model1_name in model_topics and model2_name in model_topics:
|
342 |
+
model2_title_visible = True
|
343 |
+
model2_title_value = "#### Topic Distribution"
|
344 |
+
model2_words_visible = True
|
345 |
+
|
346 |
+
# Simple distribution display
|
347 |
+
dist1 = model_topics[model1_name]
|
348 |
+
dist2 = model_topics[model2_name]
|
349 |
+
|
350 |
+
model2_words_value = f"""
|
351 |
+
**{model1_name}**: {', '.join([f"Topic {i+1}: {v:.2f}" for i, v in enumerate(dist1[:3])])}
|
352 |
+
|
353 |
+
**{model2_name}**: {', '.join([f"Topic {i+1}: {v:.2f}" for i, v in enumerate(dist2[:3])])}
|
354 |
+
"""
|
355 |
+
|
356 |
+
# Add similarity metrics if available
|
357 |
+
comparisons = topic_results.get("comparisons", {})
|
358 |
+
if comparisons:
|
359 |
+
comparison_key = f"{model1_name} vs {model2_name}"
|
360 |
+
|
361 |
+
if comparison_key in comparisons:
|
362 |
+
metrics = comparisons[comparison_key]
|
363 |
+
js_div = metrics.get("js_divergence", 0)
|
364 |
+
|
365 |
+
similarity_title_visible = True
|
366 |
+
similarity_metrics_visible = True
|
367 |
+
similarity_metrics_value = f"""
|
368 |
+
- **Topic Distribution Divergence**: {js_div:.4f} (lower means more similar topic distributions)
|
369 |
+
"""
|
370 |
+
|
371 |
+
# Check for Classifier analysis
|
372 |
+
elif selected_analysis == "Classifier" and "classifier" in analyses:
|
373 |
+
visualization_area_visible = True
|
374 |
+
classifier_results = analyses["classifier"]
|
375 |
+
models = classifier_results.get("models", [])
|
376 |
|
377 |
+
if len(models) >= 2:
|
378 |
+
prompt_title_visible = True
|
379 |
+
prompt_title_value = f"## Analysis of Prompt: \"{prompt[:100]}...\""
|
380 |
+
|
381 |
+
models_compared_visible = True
|
382 |
+
models_compared_value = f"### Classifier Analysis for {models[0]} and {models[1]}"
|
383 |
+
|
384 |
+
# Extract and format classifier information
|
385 |
model1_name = models[0]
|
386 |
model2_name = models[1]
|
387 |
|
388 |
+
# Display classifications for each model
|
389 |
+
classifications = classifier_results.get("classifications", {})
|
390 |
+
|
391 |
+
if classifications:
|
392 |
+
model1_title_visible = True
|
393 |
+
model1_title_value = f"#### Classification Results"
|
394 |
+
model1_words_visible = True
|
395 |
|
396 |
+
model1_results = classifications.get(model1_name, {})
|
397 |
+
model2_results = classifications.get(model2_name, {})
|
|
|
398 |
|
399 |
+
model1_words_value = f"""
|
400 |
+
**{model1_name}**:
|
401 |
+
- Formality: {model1_results.get('formality', 'N/A')}
|
402 |
+
- Sentiment: {model1_results.get('sentiment', 'N/A')}
|
403 |
+
- Complexity: {model1_results.get('complexity', 'N/A')}
|
404 |
|
405 |
+
**{model2_name}**:
|
406 |
+
- Formality: {model2_results.get('formality', 'N/A')}
|
407 |
+
- Sentiment: {model2_results.get('sentiment', 'N/A')}
|
408 |
+
- Complexity: {model2_results.get('complexity', 'N/A')}
|
409 |
"""
|
410 |
|
411 |
+
# Show comparison
|
412 |
+
model2_title_visible = True
|
413 |
+
model2_title_value = f"#### Classification Comparison"
|
414 |
+
model2_words_visible = True
|
|
|
|
|
|
|
|
|
415 |
|
416 |
+
differences = classifier_results.get("differences", {})
|
417 |
+
model2_words_value = "\n".join([
|
418 |
+
f"- **{category}**: {diff}"
|
419 |
+
for category, diff in differences.items()
|
420 |
+
])
|
421 |
+
|
422 |
+
# If we don't have visualization data from any analysis
|
423 |
+
if not visualization_area_visible:
|
424 |
+
return (
|
425 |
+
analysis_results,
|
426 |
+
False,
|
427 |
+
False,
|
428 |
+
gr.update(visible=False),
|
429 |
+
gr.update(visible=False),
|
430 |
+
gr.update(visible=False),
|
431 |
+
gr.update(visible=False),
|
432 |
+
gr.update(visible=False),
|
433 |
+
gr.update(visible=False),
|
434 |
+
gr.update(visible=False),
|
435 |
+
gr.update(visible=False),
|
436 |
+
gr.update(visible=False),
|
437 |
+
True,
|
438 |
+
gr.update(visible=True, value="❌ **No visualization data found.** Make sure to select a valid analysis option.")
|
439 |
+
)
|
440 |
+
|
441 |
+
# Return all updated component values
|
442 |
+
return (
|
443 |
+
analysis_results, # analysis_results_state
|
444 |
+
False, # analysis_output visibility
|
445 |
+
True, # visualization_area_visible
|
446 |
+
gr.update(visible=True), # analysis_title
|
447 |
+
gr.update(visible=prompt_title_visible, value=prompt_title_value), # prompt_title
|
448 |
+
gr.update(visible=models_compared_visible, value=models_compared_value), # models_compared
|
449 |
+
gr.update(visible=model1_title_visible, value=model1_title_value), # model1_title
|
450 |
+
gr.update(visible=model1_words_visible, value=model1_words_value), # model1_words
|
451 |
+
gr.update(visible=model2_title_visible, value=model2_title_value), # model2_title
|
452 |
+
gr.update(visible=model2_words_visible, value=model2_words_value), # model2_words
|
453 |
+
gr.update(visible=similarity_title_visible), # similarity_metrics_title
|
454 |
+
gr.update(visible=similarity_metrics_visible, value=similarity_metrics_value), # similarity_metrics
|
455 |
+
False, # status_message_visible
|
456 |
+
gr.update(visible=False) # status_message
|
457 |
+
)
|
458 |
|
459 |
+
except Exception as e:
|
460 |
+
import traceback
|
461 |
+
error_msg = f"Error in analysis: {str(e)}\n{traceback.format_exc()}"
|
462 |
+
print(error_msg)
|
463 |
+
|
464 |
return (
|
465 |
+
{"error": error_msg}, # analysis_results_state
|
466 |
+
True, # analysis_output visibility (show raw JSON for debugging)
|
467 |
+
False, # visualization_area_visible
|
468 |
gr.update(visible=False),
|
469 |
gr.update(visible=False),
|
470 |
gr.update(visible=False),
|
|
|
474 |
gr.update(visible=False),
|
475 |
gr.update(visible=False),
|
476 |
gr.update(visible=False),
|
477 |
+
True, # status_message_visible
|
478 |
+
gr.update(visible=True, value=f"❌ **Error during analysis:**\n\n```\n{str(e)}\n```") # status_message
|
479 |
)
|
480 |
+
|
481 |
+
# Add a new LLM Analysis tab
|
482 |
+
with gr.Tab("LLM Analysis"):
|
483 |
+
gr.Markdown("## LLM-Based Response Analysis")
|
484 |
+
|
485 |
+
with gr.Row():
|
486 |
+
with gr.Column():
|
487 |
+
llm_analysis_type = gr.Radio(
|
488 |
+
choices=["Response Quality", "Response Comparison", "Factual Accuracy"],
|
489 |
+
label="Analysis Type",
|
490 |
+
value="Response Comparison"
|
|
|
|
|
|
|
|
|
|
|
|
|
491 |
)
|
492 |
+
|
493 |
+
llm_model = gr.Dropdown(
|
494 |
+
choices=["OpenAI GPT-4", "Anthropic Claude", "Local LLM"],
|
495 |
+
label="Analysis Model",
|
496 |
+
value="OpenAI GPT-4"
|
497 |
+
)
|
498 |
+
|
499 |
+
run_llm_analysis_btn = gr.Button("Run LLM Analysis", variant="primary")
|
500 |
|
501 |
+
with gr.Column():
|
502 |
+
llm_analysis_prompt = gr.Textbox(
|
503 |
+
label="Custom Analysis Instructions (Optional)",
|
504 |
+
placeholder="Enter any specific instructions for the analysis...",
|
505 |
+
lines=3
|
506 |
+
)
|
507 |
|
508 |
+
llm_analysis_status = gr.Markdown("*No analysis has been run*")
|
509 |
+
|
510 |
+
llm_analysis_result = gr.Markdown(visible=False)
|
511 |
+
|
512 |
+
# Placeholder function for LLM analysis
|
513 |
+
def run_llm_analysis(dataset, analysis_type, model, custom_prompt):
|
514 |
+
if not dataset or "entries" not in dataset or not dataset["entries"]:
|
515 |
return (
|
516 |
+
gr.update(visible=True, value="❌ **Error:** No dataset loaded. Please create or load a dataset first."),
|
517 |
+
gr.update(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
518 |
)
|
519 |
+
|
520 |
+
# Placeholder for actual implementation
|
521 |
+
return (
|
522 |
+
gr.update(visible=True, value="⏳ **Implementation in progress**\n\nLLM-based analysis will be available in a future update."),
|
523 |
+
gr.update(visible=False)
|
524 |
+
)
|
525 |
+
|
526 |
+
# Connect the run button to the analysis function
|
527 |
+
run_llm_analysis_btn.click(
|
528 |
+
fn=run_llm_analysis,
|
529 |
+
inputs=[dataset_state, llm_analysis_type, llm_model, llm_analysis_prompt],
|
530 |
+
outputs=[llm_analysis_status, llm_analysis_result]
|
531 |
+
)
|
532 |
|
533 |
+
# Visibility update functions - unchanged
|
534 |
def update_visibility(viz_visible, status_visible):
|
535 |
+
# ...existing code...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
536 |
|
537 |
+
# Run analysis with proper parameters
|
538 |
+
run_analysis_btn.click(
|
539 |
+
fn=run_analysis,
|
540 |
+
inputs=[dataset_state, analysis_options, bow_top_slider, ngram_n, ngram_top, topic_count],
|
541 |
+
outputs=[
|
542 |
+
analysis_results_state,
|
543 |
+
analysis_output,
|
544 |
+
visualization_area_visible,
|
545 |
+
analysis_title,
|
546 |
+
prompt_title,
|
547 |
+
models_compared,
|
548 |
+
model1_title,
|
549 |
+
model1_words,
|
550 |
+
model2_title,
|
551 |
+
model2_words,
|
552 |
+
similarity_metrics_title,
|
553 |
+
similarity_metrics,
|
554 |
+
status_message_visible,
|
555 |
+
status_message
|
556 |
+
]
|
557 |
+
)
|
558 |
|
559 |
return app
|
560 |
|
processors/text_classifiers.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import nltk
|
2 |
+
from nltk.sentiment import SentimentIntensityAnalyzer
|
3 |
+
import statistics
|
4 |
+
import re
|
5 |
+
|
6 |
+
def download_nltk_resources():
|
7 |
+
"""Download required NLTK resources if not already downloaded"""
|
8 |
+
try:
|
9 |
+
nltk.download('vader_lexicon', quiet=True)
|
10 |
+
except:
|
11 |
+
pass
|
12 |
+
|
13 |
+
# Ensure NLTK resources are available
|
14 |
+
download_nltk_resources()
|
15 |
+
|
16 |
+
def classify_formality(text):
|
17 |
+
"""
|
18 |
+
Classify text formality based on simple heuristics
|
19 |
+
|
20 |
+
Args:
|
21 |
+
text (str): Text to analyze
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
str: Formality level (Formal, Neutral, or Informal)
|
25 |
+
"""
|
26 |
+
# Simple formality indicators
|
27 |
+
formal_indicators = [
|
28 |
+
r'\b(therefore|thus|consequently|furthermore|moreover|however)\b',
|
29 |
+
r'\b(in accordance with|with respect to|regarding|concerning)\b',
|
30 |
+
r'\b(shall|must|may|will be required to)\b',
|
31 |
+
r'\b(it is|there are|there is)\b',
|
32 |
+
r'\b(Mr\.|Ms\.|Dr\.|Prof\.)\b'
|
33 |
+
]
|
34 |
+
|
35 |
+
informal_indicators = [
|
36 |
+
r'\b(like|yeah|cool|awesome|gonna|wanna|gotta)\b',
|
37 |
+
r'(\!{2,}|\?{2,})',
|
38 |
+
r'\b(lol|haha|wow|omg|btw)\b',
|
39 |
+
r'\b(don\'t|can\'t|won\'t|shouldn\'t)\b',
|
40 |
+
r'(\.{3,})'
|
41 |
+
]
|
42 |
+
|
43 |
+
# Calculate scores
|
44 |
+
formal_score = sum([len(re.findall(pattern, text, re.IGNORECASE)) for pattern in formal_indicators])
|
45 |
+
informal_score = sum([len(re.findall(pattern, text, re.IGNORECASE)) for pattern in informal_indicators])
|
46 |
+
|
47 |
+
# Normalize by text length
|
48 |
+
words = len(text.split())
|
49 |
+
if words > 0:
|
50 |
+
formal_score = formal_score / (words / 100) # per 100 words
|
51 |
+
informal_score = informal_score / (words / 100) # per 100 words
|
52 |
+
|
53 |
+
# Determine formality
|
54 |
+
if formal_score > informal_score * 1.5:
|
55 |
+
return "Formal"
|
56 |
+
elif informal_score > formal_score * 1.5:
|
57 |
+
return "Informal"
|
58 |
+
else:
|
59 |
+
return "Neutral"
|
60 |
+
|
61 |
+
def classify_sentiment(text):
|
62 |
+
"""
|
63 |
+
Classify text sentiment using NLTK's VADER
|
64 |
+
|
65 |
+
Args:
|
66 |
+
text (str): Text to analyze
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
str: Sentiment (Positive, Neutral, or Negative)
|
70 |
+
"""
|
71 |
+
try:
|
72 |
+
sia = SentimentIntensityAnalyzer()
|
73 |
+
sentiment = sia.polarity_scores(text)
|
74 |
+
|
75 |
+
if sentiment['compound'] >= 0.05:
|
76 |
+
return "Positive"
|
77 |
+
elif sentiment['compound'] <= -0.05:
|
78 |
+
return "Negative"
|
79 |
+
else:
|
80 |
+
return "Neutral"
|
81 |
+
except:
|
82 |
+
return "Neutral"
|
83 |
+
|
84 |
+
def classify_complexity(text):
|
85 |
+
"""
|
86 |
+
Classify text complexity based on sentence length and word length
|
87 |
+
|
88 |
+
Args:
|
89 |
+
text (str): Text to analyze
|
90 |
+
|
91 |
+
Returns:
|
92 |
+
str: Complexity level (Simple, Average, or Complex)
|
93 |
+
"""
|
94 |
+
# Split into sentences
|
95 |
+
sentences = nltk.sent_tokenize(text)
|
96 |
+
|
97 |
+
if not sentences:
|
98 |
+
return "Average"
|
99 |
+
|
100 |
+
# Calculate average sentence length
|
101 |
+
sentence_lengths = [len(s.split()) for s in sentences]
|
102 |
+
avg_sentence_length = statistics.mean(sentence_lengths) if sentence_lengths else 0
|
103 |
+
|
104 |
+
# Calculate average word length
|
105 |
+
words = [word for sentence in sentences for word in nltk.word_tokenize(sentence)
|
106 |
+
if word.isalnum()] # only consider alphanumeric tokens
|
107 |
+
|
108 |
+
avg_word_length = statistics.mean([len(word) for word in words]) if words else 0
|
109 |
+
|
110 |
+
# Determine complexity
|
111 |
+
if avg_sentence_length > 20 or avg_word_length > 6:
|
112 |
+
return "Complex"
|
113 |
+
elif avg_sentence_length < 12 or avg_word_length < 4:
|
114 |
+
return "Simple"
|
115 |
+
else:
|
116 |
+
return "Average"
|
117 |
+
|
118 |
+
def compare_classifications(text1, text2):
|
119 |
+
"""
|
120 |
+
Compare classifications between two texts
|
121 |
+
|
122 |
+
Args:
|
123 |
+
text1 (str): First text
|
124 |
+
text2 (str): Second text
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
dict: Comparison results
|
128 |
+
"""
|
129 |
+
formality1 = classify_formality(text1)
|
130 |
+
formality2 = classify_formality(text2)
|
131 |
+
|
132 |
+
sentiment1 = classify_sentiment(text1)
|
133 |
+
sentiment2 = classify_sentiment(text2)
|
134 |
+
|
135 |
+
complexity1 = classify_complexity(text1)
|
136 |
+
complexity2 = classify_complexity(text2)
|
137 |
+
|
138 |
+
results = {}
|
139 |
+
|
140 |
+
if formality1 != formality2:
|
141 |
+
results["Formality"] = f"Model 1 is {formality1.lower()}, while Model 2 is {formality2.lower()}"
|
142 |
+
|
143 |
+
if sentiment1 != sentiment2:
|
144 |
+
results["Sentiment"] = f"Model 1 has a {sentiment1.lower()} tone, while Model 2 has a {sentiment2.lower()} tone"
|
145 |
+
|
146 |
+
if complexity1 != complexity2:
|
147 |
+
results["Complexity"] = f"Model 1 uses {complexity1.lower()} language, while Model 2 uses {complexity2.lower()} language"
|
148 |
+
|
149 |
+
if not results:
|
150 |
+
results["Summary"] = "Both responses have similar writing characteristics"
|
151 |
+
|
152 |
+
return results
|
ui/analysis_screen.py
CHANGED
@@ -9,194 +9,156 @@ from processors.ngram_analysis import compare_ngrams
|
|
9 |
from processors.bow_analysis import compare_bow
|
10 |
# from processors.metrics import calculate_similarity
|
11 |
# from processors.diff_highlighter import highlight_differences
|
|
|
|
|
12 |
|
13 |
def create_analysis_screen():
|
14 |
"""
|
15 |
-
Create the analysis options screen
|
16 |
|
17 |
Returns:
|
18 |
-
tuple:
|
19 |
"""
|
20 |
-
with gr.Column() as
|
21 |
gr.Markdown("## Analysis Options")
|
22 |
-
gr.Markdown("Select which analysis you want to run on the LLM responses.")
|
23 |
|
24 |
-
# Change from
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
"N-gram Analysis",
|
30 |
-
"Topic Modeling",
|
31 |
-
"Bias Detection",
|
32 |
-
"Classifier", # New option for future development
|
33 |
-
"LLM Analysis" # New option for future development
|
34 |
-
],
|
35 |
-
value="Bag of Words", # Default selection
|
36 |
-
label="Select Analysis Type"
|
37 |
-
)
|
38 |
-
|
39 |
-
# Create slider directly here for easier access
|
40 |
-
gr.Markdown("### Bag of Words Parameters")
|
41 |
-
bow_top_slider = gr.Slider(
|
42 |
-
minimum=10, maximum=100, value=25, step=5,
|
43 |
-
label="Top Words to Compare",
|
44 |
-
elem_id="bow_top_slider"
|
45 |
-
)
|
46 |
-
|
47 |
-
# Create N-gram parameters accessible at top level
|
48 |
-
ngram_n = gr.Radio(
|
49 |
-
choices=["1", "2", "3"], value="2",
|
50 |
-
label="N-gram Size",
|
51 |
-
visible=False
|
52 |
-
)
|
53 |
-
ngram_top = gr.Slider(
|
54 |
-
minimum=5, maximum=30, value=10, step=1,
|
55 |
-
label="Top N-grams to Display",
|
56 |
-
visible=False
|
57 |
)
|
58 |
|
59 |
-
#
|
60 |
-
|
61 |
-
minimum=
|
62 |
-
|
63 |
-
visible=False
|
64 |
-
)
|
65 |
-
|
66 |
-
# Parameters for each analysis type
|
67 |
-
with gr.Group() as analysis_params:
|
68 |
-
# Topic modeling parameters
|
69 |
-
with gr.Group(visible=False) as topic_params:
|
70 |
-
gr.Markdown("### Topic Modeling Parameters")
|
71 |
-
# We'll use the topic_count defined above
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
gr.Markdown("### N-gram Parameters")
|
76 |
-
# We're already using ngram_n and ngram_top defined above
|
77 |
-
|
78 |
-
# Bias detection parameters
|
79 |
-
with gr.Group(visible=False) as bias_params:
|
80 |
-
gr.Markdown("### Bias Detection Parameters")
|
81 |
-
bias_methods = gr.CheckboxGroup(
|
82 |
-
choices=["Sentiment Analysis", "Partisan Leaning", "Framing Analysis"],
|
83 |
-
value=["Sentiment Analysis", "Partisan Leaning"],
|
84 |
-
label="Bias Detection Methods"
|
85 |
-
)
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
gr.Markdown("### Classifier Parameters")
|
90 |
-
gr.Markdown("*Classifier options will be available in a future update*")
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
gr.Markdown("### LLM Analysis Parameters")
|
95 |
-
gr.Markdown("*LLM Analysis options will be available in a future update*")
|
96 |
-
|
97 |
-
# Function to update parameter visibility based on selected analysis
|
98 |
-
def update_params_visibility(selected):
|
99 |
-
return {
|
100 |
-
topic_params: gr.update(visible=selected == "Topic Modeling"),
|
101 |
-
ngram_params: gr.update(visible=selected == "N-gram Analysis"),
|
102 |
-
bias_params: gr.update(visible=selected == "Bias Detection"),
|
103 |
-
classifier_params: gr.update(visible=selected == "Classifier"),
|
104 |
-
llm_params: gr.update(visible=selected == "LLM Analysis"),
|
105 |
-
ngram_n: gr.update(visible=selected == "N-gram Analysis"),
|
106 |
-
ngram_top: gr.update(visible=selected == "N-gram Analysis"),
|
107 |
-
topic_count: gr.update(visible=selected == "Topic Modeling"),
|
108 |
-
bow_top_slider: gr.update(visible=selected == "Bag of Words")
|
109 |
-
}
|
110 |
-
|
111 |
-
# Set up event handler for analysis selection
|
112 |
-
analysis_options.change(
|
113 |
-
fn=update_params_visibility,
|
114 |
-
inputs=[analysis_options],
|
115 |
-
outputs=[
|
116 |
-
topic_params,
|
117 |
-
ngram_params,
|
118 |
-
bias_params,
|
119 |
-
classifier_params,
|
120 |
-
llm_params,
|
121 |
-
ngram_n,
|
122 |
-
ngram_top,
|
123 |
-
topic_count,
|
124 |
-
bow_top_slider
|
125 |
-
]
|
126 |
-
)
|
127 |
|
128 |
-
|
129 |
-
|
|
|
|
|
130 |
|
131 |
-
# Analysis output area - hidden JSON component to store raw results
|
132 |
-
analysis_output = gr.JSON(label="Analysis Results", visible=False)
|
133 |
-
|
134 |
-
# Return the components needed by app.py
|
135 |
return analysis_options, analysis_params, run_analysis_btn, analysis_output, bow_top_slider, ngram_n, ngram_top, topic_count
|
136 |
|
137 |
# Process analysis request function
|
138 |
def process_analysis_request(dataset, selected_analysis, parameters):
|
139 |
"""
|
140 |
-
Process the analysis request
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
"""
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
-
# Return results and update the output component
|
197 |
-
return analysis_results, gr.update(visible=False, value=analysis_results) # Hide the raw JSON
|
198 |
-
except Exception as e:
|
199 |
-
import traceback
|
200 |
-
error_msg = f"Analysis error: {str(e)}\n{traceback.format_exc()}"
|
201 |
-
print(error_msg)
|
202 |
-
return {}, gr.update(visible=True, value=json.dumps({"error": error_msg}, indent=2))
|
|
|
9 |
from processors.bow_analysis import compare_bow
|
10 |
# from processors.metrics import calculate_similarity
|
11 |
# from processors.diff_highlighter import highlight_differences
|
12 |
+
# Add this import at the top
|
13 |
+
from analysis.text_classifiers import classify_formality, classify_sentiment, classify_complexity, compare_classifications
|
14 |
|
15 |
def create_analysis_screen():
|
16 |
"""
|
17 |
+
Create the UI components for the analysis options screen.
|
18 |
|
19 |
Returns:
|
20 |
+
tuple: The analysis UI components
|
21 |
"""
|
22 |
+
with gr.Column() as analysis_container:
|
23 |
gr.Markdown("## Analysis Options")
|
|
|
24 |
|
25 |
+
# Change from checkboxes to radio buttons for analysis type
|
26 |
+
analysis_options = gr.Radio(
|
27 |
+
choices=["Bag of Words", "N-gram Analysis", "Topic Modeling", "Classifier"],
|
28 |
+
label="Analysis Type",
|
29 |
+
value="Bag of Words"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
)
|
31 |
|
32 |
+
# Parameters for different analysis types
|
33 |
+
with gr.Column() as analysis_params:
|
34 |
+
bow_top_slider = gr.Slider(minimum=5, maximum=50, step=5, value=20,
|
35 |
+
label="Number of top words to display (Bag of Words)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
ngram_n = gr.Slider(minimum=1, maximum=5, step=1, value=2,
|
38 |
+
label="N-gram size")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
ngram_top = gr.Slider(minimum=5, maximum=50, step=5, value=15,
|
41 |
+
label="Number of top n-grams to display")
|
|
|
|
|
42 |
|
43 |
+
topic_count = gr.Slider(minimum=2, maximum=10, step=1, value=3,
|
44 |
+
label="Number of topics (Topic Modeling)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
run_analysis_btn = gr.Button("Run Analysis", size="lg", variant="primary")
|
47 |
+
|
48 |
+
# Output area - JSON view for debugging or advanced users
|
49 |
+
analysis_output = gr.JSON(value={}, visible=False, label="Raw Analysis Results")
|
50 |
|
|
|
|
|
|
|
|
|
51 |
return analysis_options, analysis_params, run_analysis_btn, analysis_output, bow_top_slider, ngram_n, ngram_top, topic_count
|
52 |
|
53 |
# Process analysis request function
|
54 |
def process_analysis_request(dataset, selected_analysis, parameters):
|
55 |
"""
|
56 |
+
Process the analysis request based on the selected options.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
dataset (dict): The input dataset
|
60 |
+
selected_analysis (str): The selected analysis type
|
61 |
+
parameters (dict): Additional parameters for the analysis
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
tuple: A tuple containing (analysis_results, visualization_data)
|
65 |
"""
|
66 |
+
if not dataset or "entries" not in dataset or not dataset["entries"]:
|
67 |
+
return {}, None
|
68 |
+
|
69 |
+
# Initialize the results structure
|
70 |
+
results = {"analyses": {}}
|
71 |
+
|
72 |
+
# Get the prompt text from the first entry
|
73 |
+
prompt_text = dataset["entries"][0].get("prompt", "")
|
74 |
+
if not prompt_text:
|
75 |
+
return {"error": "No prompt found in dataset"}, None
|
76 |
+
|
77 |
+
# Initialize the analysis container for this prompt
|
78 |
+
results["analyses"][prompt_text] = {}
|
79 |
+
|
80 |
+
# Get model names and responses
|
81 |
+
model1_name = dataset["entries"][0].get("model", "Model 1")
|
82 |
+
model2_name = dataset["entries"][1].get("model", "Model 2")
|
83 |
+
|
84 |
+
model1_response = dataset["entries"][0].get("response", "")
|
85 |
+
model2_response = dataset["entries"][1].get("response", "")
|
86 |
+
|
87 |
+
# Process based on the selected analysis type
|
88 |
+
if selected_analysis == "Bag of Words":
|
89 |
+
# Perform Bag of Words analysis
|
90 |
+
results["analyses"][prompt_text]["bag_of_words"] = {
|
91 |
+
"models": [model1_name, model2_name],
|
92 |
+
"important_words": {
|
93 |
+
model1_name: extract_important_words(model1_response, top_n=parameters.get("bow_top", 20)),
|
94 |
+
model2_name: extract_important_words(model2_response, top_n=parameters.get("bow_top", 20))
|
95 |
+
},
|
96 |
+
"comparisons": {
|
97 |
+
f"{model1_name} vs {model2_name}": calculate_text_similarity(model1_response, model2_response)
|
98 |
+
}
|
99 |
+
}
|
100 |
+
|
101 |
+
elif selected_analysis == "N-gram Analysis":
|
102 |
+
# Perform N-gram analysis
|
103 |
+
ngram_size = parameters.get("ngram_n", 2)
|
104 |
+
top_n = parameters.get("ngram_top", 15)
|
105 |
+
|
106 |
+
results["analyses"][prompt_text]["ngram_analysis"] = {
|
107 |
+
"models": [model1_name, model2_name],
|
108 |
+
"ngram_size": ngram_size,
|
109 |
+
"important_ngrams": {
|
110 |
+
model1_name: extract_ngrams(model1_response, n=ngram_size, top_n=top_n),
|
111 |
+
model2_name: extract_ngrams(model2_response, n=ngram_size, top_n=top_n)
|
112 |
+
},
|
113 |
+
"comparisons": {
|
114 |
+
f"{model1_name} vs {model2_name}": compare_ngrams(model1_response, model2_response, n=ngram_size)
|
115 |
+
}
|
116 |
+
}
|
117 |
+
|
118 |
+
elif selected_analysis == "Topic Modeling":
|
119 |
+
# Perform topic modeling analysis
|
120 |
+
topic_count = parameters.get("topic_count", 3)
|
121 |
+
|
122 |
+
try:
|
123 |
+
topic_results = perform_topic_modeling(
|
124 |
+
[model1_response, model2_response],
|
125 |
+
model_names=[model1_name, model2_name],
|
126 |
+
n_topics=topic_count
|
127 |
+
)
|
128 |
|
129 |
+
results["analyses"][prompt_text]["topic_modeling"] = topic_results
|
130 |
+
except Exception as e:
|
131 |
+
import traceback
|
132 |
+
print(f"Topic modeling error: {str(e)}\n{traceback.format_exc()}")
|
133 |
+
results["analyses"][prompt_text]["topic_modeling"] = {
|
134 |
+
"models": [model1_name, model2_name],
|
135 |
+
"error": str(e),
|
136 |
+
"message": "Topic modeling failed. Try with longer text or different parameters."
|
137 |
+
}
|
138 |
+
|
139 |
+
elif selected_analysis == "Classifier":
|
140 |
+
# Perform classifier analysis (placeholder implementation)
|
141 |
+
results["analyses"][prompt_text]["classifier"] = {
|
142 |
+
"models": [model1_name, model2_name],
|
143 |
+
"classifications": {
|
144 |
+
model1_name: {
|
145 |
+
"formality": classify_formality(model1_response),
|
146 |
+
"sentiment": classify_sentiment(model1_response),
|
147 |
+
"complexity": classify_complexity(model1_response)
|
148 |
+
},
|
149 |
+
model2_name: {
|
150 |
+
"formality": classify_formality(model2_response),
|
151 |
+
"sentiment": classify_sentiment(model2_response),
|
152 |
+
"complexity": classify_complexity(model2_response)
|
153 |
+
}
|
154 |
+
},
|
155 |
+
"differences": compare_classifications(model1_response, model2_response)
|
156 |
+
}
|
157 |
+
|
158 |
+
else:
|
159 |
+
# Unknown analysis type
|
160 |
+
results["analyses"][prompt_text]["message"] = "Please select a valid analysis type."
|
161 |
+
|
162 |
+
# Return both the analysis results and a placeholder for visualization data
|
163 |
+
return results, None
|
164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|