Spaces:
Sleeping
Sleeping
Ryan
commited on
Commit
·
fecdfa0
1
Parent(s):
ce0a41c
update
Browse files
visualization/bow_visualizer.py
CHANGED
@@ -68,30 +68,6 @@ def create_bow_visualization(analysis_results):
|
|
68 |
|
69 |
output_components.append(gr.Plot(value=fig))
|
70 |
|
71 |
-
# Show comparison metrics
|
72 |
-
comparisons = bow_results.get("comparisons", {})
|
73 |
-
if comparisons:
|
74 |
-
for comparison_key, metrics in comparisons.items():
|
75 |
-
output_components.append(gr.Markdown(f"### Similarity Metrics for {comparison_key}"))
|
76 |
-
|
77 |
-
# Format metrics for better display
|
78 |
-
if "jaccard_similarity" in metrics:
|
79 |
-
output_components.append(gr.Markdown(
|
80 |
-
f"- **Jaccard Similarity**: {metrics['jaccard_similarity']:.2f} "
|
81 |
-
f"(measures word overlap between responses)"
|
82 |
-
))
|
83 |
-
|
84 |
-
if "cosine_similarity" in metrics:
|
85 |
-
output_components.append(gr.Markdown(
|
86 |
-
f"- **Cosine Similarity**: {metrics['cosine_similarity']:.2f} "
|
87 |
-
f"(measures how similar the word frequency distributions are)"
|
88 |
-
))
|
89 |
-
|
90 |
-
if "common_word_count" in metrics:
|
91 |
-
output_components.append(gr.Markdown(
|
92 |
-
f"- **Common Words**: {metrics['common_word_count']} words appear in both responses"
|
93 |
-
))
|
94 |
-
|
95 |
# Visualize differential words (words with biggest frequency difference)
|
96 |
diff_words = bow_results.get("differential_words", [])
|
97 |
word_matrix = bow_results.get("word_count_matrix", {})
|
@@ -190,19 +166,6 @@ def process_and_visualize_analysis(analysis_results):
|
|
190 |
word_list = [f"{item['word']} ({item['count']})" for item in words[:10]]
|
191 |
components.append(gr.Markdown(f"**{model}**: {', '.join(word_list)}"))
|
192 |
|
193 |
-
# Display comparison metrics
|
194 |
-
if "comparisons" in bow_results:
|
195 |
-
components.append(gr.Markdown("#### Similarity Metrics"))
|
196 |
-
|
197 |
-
for comparison, metrics in bow_results["comparisons"].items():
|
198 |
-
cosine = metrics.get("cosine_similarity", 0)
|
199 |
-
jaccard = metrics.get("jaccard_similarity", 0)
|
200 |
-
components.append(gr.Markdown(
|
201 |
-
f"**{comparison}**:\n"
|
202 |
-
f"- Cosine similarity: {cosine:.2f}\n"
|
203 |
-
f"- Jaccard similarity: {jaccard:.2f}"
|
204 |
-
))
|
205 |
-
|
206 |
# Add visualizations for word frequency differences
|
207 |
if "differential_words" in bow_results and "word_count_matrix" in bow_results and len(bow_results["models"]) >= 2:
|
208 |
diff_words = bow_results["differential_words"]
|
|
|
68 |
|
69 |
output_components.append(gr.Plot(value=fig))
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
# Visualize differential words (words with biggest frequency difference)
|
72 |
diff_words = bow_results.get("differential_words", [])
|
73 |
word_matrix = bow_results.get("word_count_matrix", {})
|
|
|
166 |
word_list = [f"{item['word']} ({item['count']})" for item in words[:10]]
|
167 |
components.append(gr.Markdown(f"**{model}**: {', '.join(word_list)}"))
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
# Add visualizations for word frequency differences
|
170 |
if "differential_words" in bow_results and "word_count_matrix" in bow_results and len(bow_results["models"]) >= 2:
|
171 |
diff_words = bow_results["differential_words"]
|