import gradio as gr import logging import traceback import matplotlib.pyplot as plt import numpy as np import plotly.graph_objects as go from plotly.subplots import make_subplots import io import base64 # Set up logging logger = logging.getLogger('gradio_app.processors.bias') def process_bias_detection(analysis_results, prompt, analyses): """ Process Bias Detection analysis and return UI updates Args: analysis_results (dict): Complete analysis results prompt (str): The prompt being analyzed analyses (dict): Analysis data for the prompt Returns: tuple: UI component updates """ logger.info("Processing Bias Detection visualization") models = analyses["bias_detection"].get("models", ["Model 1", "Model 2"]) logger.info(f"Bias models: {models}") try: # Get the bias detection results bias_results = analyses["bias_detection"] # Create markdown text for bias analysis results results_markdown = f""" ## Bias Analysis Results ### Sentiment Analysis - {models[0]}: {bias_results[models[0]]['sentiment']['bias_direction']} (strength: {bias_results[models[0]]['sentiment']['bias_strength']:.2f}) - {models[1]}: {bias_results[models[1]]['sentiment']['bias_direction']} (strength: {bias_results[models[1]]['sentiment']['bias_strength']:.2f}) - Difference: {bias_results['comparative']['sentiment']['difference']:.2f} ### Partisan Leaning - {models[0]}: {bias_results[models[0]]['partisan']['leaning']} (score: {bias_results[models[0]]['partisan']['lean_score']:.2f}) - {models[1]}: {bias_results[models[1]]['partisan']['leaning']} (score: {bias_results[models[1]]['partisan']['lean_score']:.2f}) - Difference: {bias_results['comparative']['partisan']['difference']:.2f} ### Framing Analysis - {models[0]} dominant frame: {bias_results[models[0]]['framing']['dominant_frame']} - {models[1]} dominant frame: {bias_results[models[1]]['framing']['dominant_frame']} - Different frames: {'Yes' if bias_results['comparative']['framing']['different_frames'] else 'No'} ### Liberal Terms Found - {models[0]}: {', '.join(bias_results[models[0]]['partisan']['liberal_terms'][:10])} - {models[1]}: {', '.join(bias_results[models[1]]['partisan']['liberal_terms'][:10])} ### Conservative Terms Found - {models[0]}: {', '.join(bias_results[models[0]]['partisan']['conservative_terms'][:10])} - {models[1]}: {', '.join(bias_results[models[1]]['partisan']['conservative_terms'][:10])} ### Overall Comparison The overall bias difference is {bias_results['comparative']['overall']['difference']:.2f}, which is {'significant' if bias_results['comparative']['overall']['significant_bias_difference'] else 'not significant'}. """ # Return the expected components return ( analysis_results, # analysis_results_state False, # analysis_output visibility True, # visualization_area_visible gr.update(visible=True), # analysis_title gr.update(visible=True, value=f"## Analysis of Prompt: \"{prompt[:100]}...\""), # prompt_title gr.update(visible=True, value=f"### Comparing responses from {models[0]} and {models[1]}"), # models_compared gr.update(visible=True, value="#### Bias detection visualization is available below"), # model1_title gr.update(visible=True, value="The detailed bias analysis includes sentiment analysis, partisan term detection, and framing analysis."), # model1_words gr.update(visible=False), # model2_title gr.update(visible=False), # model2_words gr.update(visible=False), # similarity_metrics_title gr.update(visible=False), # similarity_metrics False, # status_message_visible gr.update(visible=False), # status_message gr.update(visible=True, value=results_markdown) # bias_visualizations - Pass markdown content ) except Exception as e: logger.error(f"Error generating bias visualization: {str(e)}\n{traceback.format_exc()}") return ( analysis_results, True, # Show raw JSON for debugging False, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), True, gr.update(visible=True, value=f"❌ **Error generating bias visualization:** {str(e)}"), gr.update(visible=False) # bias_visualizations )