import gradio as gr import logging # Set up logging logger = logging.getLogger('gradio_app.processors.ngram') def process_ngram_analysis(analysis_results, prompt, analyses): """ Process N-gram analysis and return UI updates Args: analysis_results (dict): Complete analysis results prompt (str): The prompt being analyzed analyses (dict): Analysis data for the prompt Returns: tuple: UI component updates """ visualization_area_visible = True ngram_results = analyses["ngram_analysis"] models = ngram_results.get("models", []) ngram_size = ngram_results.get("ngram_size", 2) size_name = "Unigrams" if ngram_size == 1 else f"{ngram_size}-grams" if len(models) < 2: from analysis_runner import default_no_visualization return default_no_visualization(analysis_results) prompt_title_visible = True prompt_title_value = f"## Analysis of Prompt: \"{prompt[:100]}...\"" models_compared_visible = True models_compared_value = f"### {size_name} Analysis: Comparing responses from {models[0]} and {models[1]}" # Extract and format information for display model1_name = models[0] model2_name = models[1] # Format important n-grams for each model important_ngrams = ngram_results.get("important_ngrams", {}) model1_title_visible = False model1_title_value = "" model1_words_visible = False model1_words_value = "" if model1_name in important_ngrams: model1_title_visible = True model1_title_value = f"#### Top {size_name} Used by {model1_name}" ngram_list = [f"**{item['ngram']}** ({item['count']})" for item in important_ngrams[model1_name][:10]] model1_words_visible = True model1_words_value = ", ".join(ngram_list) model2_title_visible = False model2_title_value = "" model2_words_visible = False model2_words_value = "" if model2_name in important_ngrams: model2_title_visible = True model2_title_value = f"#### Top {size_name} Used by {model2_name}" ngram_list = [f"**{item['ngram']}** ({item['count']})" for item in important_ngrams[model2_name][:10]] model2_words_visible = True model2_words_value = ", ".join(ngram_list) similarity_title_visible = False similarity_metrics_visible = False similarity_metrics_value = "" # Format similarity metrics if available if "comparisons" in ngram_results: comparison_key = f"{model1_name} vs {model2_name}" if comparison_key in ngram_results["comparisons"]: metrics = ngram_results["comparisons"][comparison_key] common_count = metrics.get("common_ngram_count", 0) similarity_title_visible = True similarity_metrics_visible = True similarity_metrics_value = f""" - **Common {size_name}**: {common_count} {size_name.lower()} appear in both responses """ return ( analysis_results, # analysis_results_state False, # analysis_output visibility True, # visualization_area_visible gr.update(visible=True), # analysis_title gr.update(visible=prompt_title_visible, value=prompt_title_value), # prompt_title gr.update(visible=models_compared_visible, value=models_compared_value), # models_compared gr.update(visible=model1_title_visible, value=model1_title_value), # model1_title gr.update(visible=model1_words_visible, value=model1_words_value), # model1_words gr.update(visible=model2_title_visible, value=model2_title_value), # model2_title gr.update(visible=model2_words_visible, value=model2_words_value), # model2_words gr.update(visible=similarity_title_visible), # similarity_metrics_title gr.update(visible=similarity_metrics_visible, value=similarity_metrics_value), # similarity_metrics False, # status_message_visible gr.update(visible=False), # status_message gr.update(visible=False) # bias_visualizations - Not visible for N-gram analysis )