Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import spaces | |
| import torch | |
| import time | |
| from diffusers import DiffusionPipeline, AutoencoderTiny | |
| from diffusers.models.attention_processor import AttnProcessor2_0 | |
| from custom_pipeline import FluxWithCFGPipeline | |
| from huggingface_hub import hf_hub_download | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| # Constants | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| DEFAULT_WIDTH = 1024 | |
| DEFAULT_HEIGHT = 1024 | |
| DEFAULT_INFERENCE_STEPS = 1 | |
| # Device and model setup | |
| dtype = torch.float16 | |
| # Download the LoRA weights using hf_hub_download | |
| lora_weights_path = hf_hub_download( | |
| repo_id="hugovntr/flux-schnell-realism", | |
| filename="schnell-realism_v2.3.safetensors", | |
| ) | |
| pipe = FluxWithCFGPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-schnell", torch_dtype=dtype | |
| ) | |
| pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype) | |
| pipe.to("cuda") | |
| # Load the LoRA weights using the downloaded path | |
| pipe.load_lora_weights(lora_weights_path, adapter_name="better") | |
| pipe.set_adapters(["better"], adapter_weights=[1.0]) | |
| pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0) | |
| pipe.unload_lora_weights() | |
| # Memory optimizations | |
| pipe.transformer.to(memory_format=torch.channels_last) # Channels last | |
| pipe.enable_xformers_memory_efficient_attention() # Flash Attention | |
| # CUDA Graph setup | |
| static_inputs = None | |
| static_model = None | |
| graph = None | |
| def setup_cuda_graph(prompt, height, width, num_inference_steps): | |
| global static_inputs, static_model, graph | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| device = "cuda" | |
| num_images_per_prompt = 1 | |
| prompt_embeds, pooled_prompt_embeds, text_ids = pipe.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=None, | |
| prompt_embeds=None, | |
| pooled_prompt_embeds=None, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=300, | |
| lora_scale=None, | |
| ) | |
| latents, latent_image_ids = pipe.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| pipe.transformer.config.in_channels // 4, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| None, | |
| None, | |
| ) | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
| image_seq_len = latents.shape[1] | |
| mu = calculate_timestep_shift(image_seq_len) | |
| timesteps, num_inference_steps = prepare_timesteps( | |
| pipe.scheduler, | |
| num_inference_steps, | |
| device, | |
| None, | |
| sigmas, | |
| mu=mu, | |
| ) | |
| guidance = torch.full([1], 3.5, device=device, dtype=torch.float16).expand(latents.shape[0]) if pipe.transformer.config.guidance_embeds else None | |
| static_inputs = { | |
| "hidden_states": latents, | |
| "timestep": timesteps, | |
| "guidance": guidance, | |
| "pooled_projections": pooled_prompt_embeds, | |
| "encoder_hidden_states": prompt_embeds, | |
| "txt_ids": text_ids, | |
| "img_ids": latent_image_ids, | |
| "joint_attention_kwargs": None, | |
| } | |
| static_model = torch.cuda.make_graphed_callables(pipe.transformer, (static_inputs,)) | |
| graph = torch.cuda.CUDAGraph() | |
| with torch.cuda.graph(graph): | |
| static_output = static_model(**static_inputs) | |
| # Inference function | |
| def generate_image(prompt, seed=24, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)): | |
| global static_inputs, graph | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(int(float(seed))) | |
| start_time = time.time() | |
| if static_inputs is None: | |
| setup_cuda_graph(prompt, height, width, num_inference_steps) | |
| static_inputs["hidden_states"].copy_(pipe.prepare_latents( | |
| 1, | |
| pipe.transformer.config.in_channels // 4, | |
| height, | |
| width, | |
| static_inputs["encoder_hidden_states"].dtype, | |
| "cuda", | |
| generator, | |
| None, | |
| )[0]) | |
| graph.replay() | |
| latents = static_inputs["hidden_states"] | |
| img = pipe._decode_latents_to_image(latents, height, width, "pil") | |
| latency = f"Latency: {(time.time()-start_time):.2f} seconds" | |
| return img, seed, latency | |
| # Example prompts | |
| examples = [ | |
| "a tiny astronaut hatching from an egg on the moon", | |
| "a cute white cat holding a sign that says hello world", | |
| "an anime illustration of Steve Jobs", | |
| "Create image of Modern house in minecraft style", | |
| "photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair", | |
| "Selfie photo of a wizard with long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken from a phone.", | |
| "Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.", | |
| ] | |
| # --- Gradio UI --- | |
| with gr.Blocks() as demo: | |
| with gr.Column(elem_id="app-container"): | |
| gr.Markdown("# π¨ Realtime FLUX Image Generator") | |
| gr.Markdown("Generate stunning images in real-time with Modified Flux.Schnell pipeline.") | |
| gr.Markdown("<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>") | |
| with gr.Row(): | |
| with gr.Column(scale=2.5): | |
| result = gr.Image(label="Generated Image", show_label=False, interactive=False) | |
| with gr.Column(scale=1): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| placeholder="Describe the image you want to generate...", | |
| lines=3, | |
| show_label=False, | |
| container=False, | |
| ) | |
| generateBtn = gr.Button("πΌοΈ Generate Image") | |
| enhanceBtn = gr.Button("π Enhance Image") | |
| with gr.Column("Advanced Options"): | |
| with gr.Row(): | |
| realtime = gr.Checkbox(label="Realtime Toggler", info="If TRUE then uses more GPU but create image in realtime.", value=False) | |
| latency = gr.Text(label="Latency") | |
| with gr.Row(): | |
| seed = gr.Number(label="Seed", value=42) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH) | |
| height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT) | |
| num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=4, step=1, value=DEFAULT_INFERENCE_STEPS) | |
| with gr.Row(): | |
| gr.Markdown("### π Inspiration Gallery") | |
| with gr.Row(): | |
| gr.Examples( | |
| examples=examples, | |
| fn=generate_image, | |
| inputs=[prompt], | |
| outputs=[result, seed, latency], | |
| cache_examples="lazy" | |
| ) | |
| enhanceBtn.click( | |
| fn=generate_image, | |
| inputs=[prompt, seed, width, height], | |
| outputs=[result, seed, latency], | |
| show_progress="full", | |
| queue=False, | |
| concurrency_limit=None | |
| ) | |
| generateBtn.click( | |
| fn=generate_image, | |
| inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], | |
| outputs=[result, seed, latency], | |
| show_progress="full", | |
| api_name="RealtimeFlux", | |
| queue=False | |
| ) | |
| def update_ui(realtime_enabled): | |
| return { | |
| prompt: gr.update(interactive=True), | |
| generateBtn: gr.update(visible=not realtime_enabled) | |
| } | |
| realtime.change( | |
| fn=update_ui, | |
| inputs=[realtime], | |
| outputs=[prompt, generateBtn], | |
| queue=False, | |
| concurrency_limit=None | |
| ) | |
| def realtime_generation(*args): | |
| if args[0]: # If realtime is enabled | |
| return next(generate_image(*args[1:])) | |
| prompt.submit( | |
| fn=generate_image, | |
| inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], | |
| outputs=[result, seed, latency], | |
| show_progress="full", | |
| queue=False, | |
| concurrency_limit=None | |
| ) | |
| for component in [prompt, width, height, num_inference_steps]: | |
| component.input( | |
| fn=realtime_generation, | |
| inputs=[realtime, prompt, seed, width, height, randomize_seed, num_inference_steps], | |
| outputs=[result, seed, latency], | |
| show_progress="hidden", | |
| trigger_mode="always_last", | |
| queue=False, | |
| concurrency_limit=None | |
| ) | |
| # Launch the app | |
| demo.queue(max_size=5, concurrency_count=1).launch() |