Spaces:
Runtime error
Runtime error
Update custom_pipeline.py
Browse files- custom_pipeline.py +192 -0
custom_pipeline.py
CHANGED
|
@@ -3,6 +3,7 @@ import numpy as np
|
|
| 3 |
from diffusers import FluxPipeline, FlowMatchEulerDiscreteScheduler
|
| 4 |
from typing import Any, Dict, List, Optional, Union
|
| 5 |
from PIL import Image
|
|
|
|
| 6 |
|
| 7 |
# Constants for shift calculation
|
| 8 |
BASE_SEQ_LEN = 256
|
|
@@ -47,6 +48,169 @@ class FluxWithCFGPipeline(FluxPipeline):
|
|
| 47 |
Extends the FluxPipeline to yield intermediate images during the denoising process
|
| 48 |
with progressively increasing resolution for faster generation.
|
| 49 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
@torch.inference_mode()
|
| 51 |
def generate_images(
|
| 52 |
self,
|
|
@@ -71,6 +235,34 @@ class FluxWithCFGPipeline(FluxPipeline):
|
|
| 71 |
height = height or self.default_sample_size * self.vae_scale_factor
|
| 72 |
width = width or self.default_sample_size * self.vae_scale_factor
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
# 1. Check inputs
|
| 75 |
self.check_inputs(
|
| 76 |
prompt,
|
|
|
|
| 3 |
from diffusers import FluxPipeline, FlowMatchEulerDiscreteScheduler
|
| 4 |
from typing import Any, Dict, List, Optional, Union
|
| 5 |
from PIL import Image
|
| 6 |
+
from collections import OrderedDict
|
| 7 |
|
| 8 |
# Constants for shift calculation
|
| 9 |
BASE_SEQ_LEN = 256
|
|
|
|
| 48 |
Extends the FluxPipeline to yield intermediate images during the denoising process
|
| 49 |
with progressively increasing resolution for faster generation.
|
| 50 |
"""
|
| 51 |
+
def __init__(
|
| 52 |
+
self,
|
| 53 |
+
vae,
|
| 54 |
+
text_encoder,
|
| 55 |
+
text_encoder_2,
|
| 56 |
+
tokenizer,
|
| 57 |
+
tokenizer_2,
|
| 58 |
+
transformer,
|
| 59 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
| 60 |
+
):
|
| 61 |
+
super().__init__(vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2, transformer, scheduler)
|
| 62 |
+
self.cuda_graphs = {}
|
| 63 |
+
|
| 64 |
+
def capture_cuda_graph(
|
| 65 |
+
self,
|
| 66 |
+
prompt: Union[str, List[str]] = None,
|
| 67 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 68 |
+
height: Optional[int] = None,
|
| 69 |
+
width: Optional[int] = None,
|
| 70 |
+
num_inference_steps: int = 4,
|
| 71 |
+
guidance_scale: float = 3.5,
|
| 72 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 73 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 74 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 75 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 76 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 77 |
+
output_type: Optional[str] = "pil",
|
| 78 |
+
return_dict: bool = True,
|
| 79 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 80 |
+
max_sequence_length: int = 300,
|
| 81 |
+
**kwargs,
|
| 82 |
+
):
|
| 83 |
+
"""
|
| 84 |
+
Captures a static CUDA Graph for the generation process given static inputs.
|
| 85 |
+
"""
|
| 86 |
+
# Use a static size for all inputs
|
| 87 |
+
static_height = height
|
| 88 |
+
static_width = width
|
| 89 |
+
|
| 90 |
+
# 1. Check inputs
|
| 91 |
+
self.check_inputs(
|
| 92 |
+
prompt,
|
| 93 |
+
prompt_2,
|
| 94 |
+
static_height,
|
| 95 |
+
static_width,
|
| 96 |
+
prompt_embeds=prompt_embeds,
|
| 97 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 98 |
+
max_sequence_length=max_sequence_length,
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
self._guidance_scale = guidance_scale
|
| 102 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
| 103 |
+
self._interrupt = False
|
| 104 |
+
|
| 105 |
+
# 2. Define call parameters
|
| 106 |
+
batch_size = 1
|
| 107 |
+
device = self._execution_device
|
| 108 |
+
|
| 109 |
+
# 3. Encode prompt (with static inputs)
|
| 110 |
+
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
| 111 |
+
|
| 112 |
+
# Use a static prompt for capture
|
| 113 |
+
static_prompt = "static prompt" if isinstance(prompt, str) else ["static prompt"]
|
| 114 |
+
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
| 115 |
+
prompt=static_prompt,
|
| 116 |
+
prompt_2=prompt_2,
|
| 117 |
+
prompt_embeds=None,
|
| 118 |
+
pooled_prompt_embeds=None,
|
| 119 |
+
device=device,
|
| 120 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 121 |
+
max_sequence_length=max_sequence_length,
|
| 122 |
+
lora_scale=lora_scale,
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
# 4. Prepare latent variables (with static inputs)
|
| 126 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
| 127 |
+
latents, latent_image_ids = self.prepare_latents(
|
| 128 |
+
batch_size * num_images_per_prompt,
|
| 129 |
+
num_channels_latents,
|
| 130 |
+
static_height,
|
| 131 |
+
static_width,
|
| 132 |
+
prompt_embeds.dtype,
|
| 133 |
+
device,
|
| 134 |
+
generator,
|
| 135 |
+
None,
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# 5. Prepare timesteps (with static inputs)
|
| 139 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
| 140 |
+
image_seq_len = latents.shape[1]
|
| 141 |
+
mu = calculate_timestep_shift(image_seq_len)
|
| 142 |
+
timesteps, num_inference_steps = prepare_timesteps(
|
| 143 |
+
self.scheduler,
|
| 144 |
+
num_inference_steps,
|
| 145 |
+
device,
|
| 146 |
+
None,
|
| 147 |
+
sigmas,
|
| 148 |
+
mu=mu,
|
| 149 |
+
)
|
| 150 |
+
self._num_timesteps = len(timesteps)
|
| 151 |
+
|
| 152 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float16).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
| 153 |
+
|
| 154 |
+
# Capture the graph
|
| 155 |
+
torch.cuda.synchronize()
|
| 156 |
+
stream = torch.cuda.Stream()
|
| 157 |
+
stream.wait_stream(torch.cuda.current_stream())
|
| 158 |
+
with torch.cuda.stream(stream):
|
| 159 |
+
for i, t in enumerate(timesteps):
|
| 160 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
| 161 |
+
noise_pred = self.transformer(
|
| 162 |
+
hidden_states=latents,
|
| 163 |
+
timestep=timestep / 1000,
|
| 164 |
+
guidance=guidance,
|
| 165 |
+
pooled_projections=pooled_prompt_embeds,
|
| 166 |
+
encoder_hidden_states=prompt_embeds,
|
| 167 |
+
txt_ids=text_ids,
|
| 168 |
+
img_ids=latent_image_ids,
|
| 169 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 170 |
+
return_dict=False,
|
| 171 |
+
)[0]
|
| 172 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 173 |
+
|
| 174 |
+
torch.cuda.current_stream().wait_stream(stream)
|
| 175 |
+
torch.cuda.synchronize()
|
| 176 |
+
|
| 177 |
+
# Capture the CUDA graph
|
| 178 |
+
graph = torch.cuda.CUDAGraph()
|
| 179 |
+
with torch.cuda.graph(graph, stream=stream):
|
| 180 |
+
# Create static inputs
|
| 181 |
+
static_inputs = OrderedDict()
|
| 182 |
+
static_inputs["hidden_states"] = latents.clone()
|
| 183 |
+
static_inputs["timestep"] = timesteps[0].expand(latents.shape[0]).to(latents.dtype)
|
| 184 |
+
static_inputs["guidance"] = guidance.clone() if guidance is not None else None
|
| 185 |
+
static_inputs["pooled_projections"] = pooled_prompt_embeds.clone()
|
| 186 |
+
static_inputs["encoder_hidden_states"] = prompt_embeds.clone()
|
| 187 |
+
static_inputs["txt_ids"] = text_ids
|
| 188 |
+
static_inputs["img_ids"] = latent_image_ids.clone()
|
| 189 |
+
static_inputs["joint_attention_kwargs"] = self.joint_attention_kwargs
|
| 190 |
+
|
| 191 |
+
# Run the static graph
|
| 192 |
+
for i, t in enumerate(timesteps):
|
| 193 |
+
timestep = static_inputs["timestep"].clone()
|
| 194 |
+
noise_pred = self.transformer(
|
| 195 |
+
hidden_states=static_inputs["hidden_states"],
|
| 196 |
+
timestep=timestep / 1000,
|
| 197 |
+
guidance=static_inputs["guidance"],
|
| 198 |
+
pooled_projections=static_inputs["pooled_projections"],
|
| 199 |
+
encoder_hidden_states=static_inputs["encoder_hidden_states"],
|
| 200 |
+
txt_ids=static_inputs["txt_ids"],
|
| 201 |
+
img_ids=static_inputs["img_ids"],
|
| 202 |
+
joint_attention_kwargs=static_inputs["joint_attention_kwargs"],
|
| 203 |
+
return_dict=False,
|
| 204 |
+
)[0]
|
| 205 |
+
static_inputs["hidden_states"] = self.scheduler.step(noise_pred, t, static_inputs["hidden_states"], return_dict=False)[0]
|
| 206 |
+
|
| 207 |
+
# Decode the latents after the loop
|
| 208 |
+
final_latents = static_inputs["hidden_states"]
|
| 209 |
+
final_image = self._decode_latents_to_image(final_latents, static_height, static_width, output_type)
|
| 210 |
+
|
| 211 |
+
# Store the graph and static inputs in the dictionary
|
| 212 |
+
self.cuda_graphs[(static_height, static_width, num_inference_steps)] = (graph, static_inputs, final_image)
|
| 213 |
+
|
| 214 |
@torch.inference_mode()
|
| 215 |
def generate_images(
|
| 216 |
self,
|
|
|
|
| 235 |
height = height or self.default_sample_size * self.vae_scale_factor
|
| 236 |
width = width or self.default_sample_size * self.vae_scale_factor
|
| 237 |
|
| 238 |
+
# 0. Check if a CUDA graph can be used
|
| 239 |
+
if (height, width, num_inference_steps) in self.cuda_graphs:
|
| 240 |
+
graph, static_inputs, final_image = self.cuda_graphs[(height, width, num_inference_steps)]
|
| 241 |
+
|
| 242 |
+
# Update dynamic inputs (like prompt) in static_inputs
|
| 243 |
+
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
| 244 |
+
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
| 245 |
+
prompt=prompt,
|
| 246 |
+
prompt_2=prompt_2,
|
| 247 |
+
prompt_embeds=prompt_embeds,
|
| 248 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 249 |
+
device=self._execution_device,
|
| 250 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 251 |
+
max_sequence_length=max_sequence_length,
|
| 252 |
+
lora_scale=lora_scale,
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
# Update only the dynamic parts of static_inputs
|
| 256 |
+
static_inputs["pooled_projections"].copy_(pooled_prompt_embeds)
|
| 257 |
+
static_inputs["encoder_hidden_states"].copy_(prompt_embeds)
|
| 258 |
+
static_inputs["txt_ids"] = text_ids
|
| 259 |
+
|
| 260 |
+
# Replay the graph
|
| 261 |
+
graph.replay()
|
| 262 |
+
torch.cuda.empty_cache()
|
| 263 |
+
|
| 264 |
+
return final_image
|
| 265 |
+
|
| 266 |
# 1. Check inputs
|
| 267 |
self.check_inputs(
|
| 268 |
prompt,
|