raft-qa-space / app.py
S-Dreamer's picture
Update app.py
ca0727a verified
import gradio as gr
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
import torch
import torch.nn.functional as F
# Load model and tokenizer
MODEL_NAME = "S-Dreamer/raft-qa-space"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForQuestionAnswering.from_pretrained(MODEL_NAME)
def answer_question(context, question):
inputs = tokenizer(
question, context, return_tensors="pt", truncation=True, max_length=512, stride=128, return_overflowing_tokens=True
)
with torch.no_grad():
outputs = model(**inputs)
start_probs = F.softmax(outputs.start_logits, dim=-1)
end_probs = F.softmax(outputs.end_logits, dim=-1)
start_idx = torch.argmax(start_probs)
end_idx = torch.argmax(end_probs) + 1
answer = tokenizer.decode(inputs["input_ids"][0][start_idx:end_idx], skip_special_tokens=True)
return answer if answer.strip() else "No answer found."
# Define UI
with gr.Blocks() as demo:
gr.Markdown("# 🤖 RAFT: Retrieval-Augmented Fine-Tuning for QA")
gr.Markdown("Ask a question based on the provided context and see how RAFT improves response accuracy!")
with gr.Row():
context_input = gr.Textbox(lines=5, label="Context", placeholder="Enter background text here...")
question_input = gr.Textbox(lines=2, label="Question", placeholder="What is the main idea?")
answer_output = gr.Textbox(label="Answer", interactive=False)
submit_btn = gr.Button("Generate Answer")
submit_btn.click(answer_question, inputs=[context_input, question_input], outputs=answer_output)
demo.launch()