Commit
·
9719f08
0
Parent(s):
Initial commit of stock sentiment analysis project
Browse files- .gitignore +21 -0
- README.md +0 -0
- data/processed +0 -0
- data/raw +0 -0
- notebooks/financial_sentiment_analysis.ipynb +358 -0
- requirements.txt +10 -0
- src/data_fetcher.py +136 -0
- src/sentiment_analyzer.py +70 -0
- src/utils.py +0 -0
.gitignore
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Environment variables
|
2 |
+
.env
|
3 |
+
|
4 |
+
# Jupyter Notebook checkpoints
|
5 |
+
.ipynb_checkpoints/
|
6 |
+
|
7 |
+
# Python cache
|
8 |
+
__pycache__/
|
9 |
+
*.pyc
|
10 |
+
*.pyo
|
11 |
+
*.pyd
|
12 |
+
|
13 |
+
# Data files (optional, depends if you commit data)
|
14 |
+
data/raw/*
|
15 |
+
data/processed/*
|
16 |
+
!.gitkeep
|
17 |
+
|
18 |
+
# Virtual environment
|
19 |
+
venv/
|
20 |
+
env/
|
21 |
+
.venv/
|
README.md
ADDED
File without changes
|
data/processed
ADDED
File without changes
|
data/raw
ADDED
File without changes
|
notebooks/financial_sentiment_analysis.ipynb
ADDED
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "8ccfe024",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# Stock Sentiment Analysis\n",
|
9 |
+
"\n",
|
10 |
+
"This notebook performs sentiment analysis on news articles related to specific stocks and correlates it with stock price movements."
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "markdown",
|
15 |
+
"id": "784f2635",
|
16 |
+
"metadata": {},
|
17 |
+
"source": [
|
18 |
+
"## 1. Setup and Imports\n",
|
19 |
+
"\n",
|
20 |
+
"Import necessary libraries and modules from our `src` directory."
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": 17,
|
26 |
+
"id": "3038c1d8",
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [
|
29 |
+
{
|
30 |
+
"name": "stdout",
|
31 |
+
"output_type": "stream",
|
32 |
+
"text": [
|
33 |
+
"Setup complete.\n"
|
34 |
+
]
|
35 |
+
}
|
36 |
+
],
|
37 |
+
"source": [
|
38 |
+
"import pandas as pd\n",
|
39 |
+
"import sys\n",
|
40 |
+
"import os\n",
|
41 |
+
"from datetime import datetime, timedelta\n",
|
42 |
+
"import matplotlib.pyplot as plt\n",
|
43 |
+
"\n",
|
44 |
+
"# Add src directory to path to import modules\n",
|
45 |
+
"module_path = os.path.abspath(os.path.join('..'))\n",
|
46 |
+
"if module_path not in sys.path:\n",
|
47 |
+
" sys.path.append(module_path)\n",
|
48 |
+
"\n",
|
49 |
+
"from src.data_fetcher import get_stock_data, get_news_articles\n",
|
50 |
+
"\n",
|
51 |
+
"# Configure pandas display options\n",
|
52 |
+
"pd.set_option('display.max_rows', 100)\n",
|
53 |
+
"pd.set_option('display.max_columns', 50)\n",
|
54 |
+
"pd.set_option('display.width', 1000)\n",
|
55 |
+
"\n",
|
56 |
+
"print(\"Setup complete.\")"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "markdown",
|
61 |
+
"id": "4ed65790",
|
62 |
+
"metadata": {},
|
63 |
+
"source": [
|
64 |
+
"## 2. Define Parameters\n",
|
65 |
+
"\n",
|
66 |
+
"Set the stock ticker and date range for analysis."
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": 18,
|
72 |
+
"id": "d0bb6ca4",
|
73 |
+
"metadata": {},
|
74 |
+
"outputs": [
|
75 |
+
{
|
76 |
+
"name": "stdout",
|
77 |
+
"output_type": "stream",
|
78 |
+
"text": [
|
79 |
+
"Ticker: AAPL\n",
|
80 |
+
"Start Date: 2025-03-31\n",
|
81 |
+
"End Date: 2025-04-30\n"
|
82 |
+
]
|
83 |
+
}
|
84 |
+
],
|
85 |
+
"source": [
|
86 |
+
"TICKER = 'AAPL' # Example: Apple Inc.\n",
|
87 |
+
"END_DATE = datetime.now().strftime('%Y-%m-%d')\n",
|
88 |
+
"# Fetch data for the last 30 days (adjust as needed)\n",
|
89 |
+
"# Note: NewsAPI free tier limits searches to the past month\n",
|
90 |
+
"START_DATE = (datetime.now() - timedelta(days=30)).strftime('%Y-%m-%d') \n",
|
91 |
+
"\n",
|
92 |
+
"print(f\"Ticker: {TICKER}\")\n",
|
93 |
+
"print(f\"Start Date: {START_DATE}\")\n",
|
94 |
+
"print(f\"End Date: {END_DATE}\")"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "markdown",
|
99 |
+
"id": "902753f9",
|
100 |
+
"metadata": {},
|
101 |
+
"source": [
|
102 |
+
"## 3. Fetch Data\n",
|
103 |
+
"\n",
|
104 |
+
"Use the functions from `data_fetcher.py` to get stock prices and news articles."
|
105 |
+
]
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"cell_type": "code",
|
109 |
+
"execution_count": 19,
|
110 |
+
"id": "0d28dcf3",
|
111 |
+
"metadata": {},
|
112 |
+
"outputs": [
|
113 |
+
{
|
114 |
+
"name": "stdout",
|
115 |
+
"output_type": "stream",
|
116 |
+
"text": [
|
117 |
+
"Fetching stock data...\n",
|
118 |
+
"Successfully fetched 21 days of stock data.\n"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"data": {
|
123 |
+
"text/html": [
|
124 |
+
"<div>\n",
|
125 |
+
"<style scoped>\n",
|
126 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
127 |
+
" vertical-align: middle;\n",
|
128 |
+
" }\n",
|
129 |
+
"\n",
|
130 |
+
" .dataframe tbody tr th {\n",
|
131 |
+
" vertical-align: top;\n",
|
132 |
+
" }\n",
|
133 |
+
"\n",
|
134 |
+
" .dataframe thead th {\n",
|
135 |
+
" text-align: right;\n",
|
136 |
+
" }\n",
|
137 |
+
"</style>\n",
|
138 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
139 |
+
" <thead>\n",
|
140 |
+
" <tr style=\"text-align: right;\">\n",
|
141 |
+
" <th></th>\n",
|
142 |
+
" <th>Date</th>\n",
|
143 |
+
" <th>Open</th>\n",
|
144 |
+
" <th>High</th>\n",
|
145 |
+
" <th>Low</th>\n",
|
146 |
+
" <th>Close</th>\n",
|
147 |
+
" <th>Volume</th>\n",
|
148 |
+
" <th>Dividends</th>\n",
|
149 |
+
" <th>Stock Splits</th>\n",
|
150 |
+
" </tr>\n",
|
151 |
+
" </thead>\n",
|
152 |
+
" <tbody>\n",
|
153 |
+
" <tr>\n",
|
154 |
+
" <th>0</th>\n",
|
155 |
+
" <td>2025-03-31</td>\n",
|
156 |
+
" <td>217.009995</td>\n",
|
157 |
+
" <td>225.619995</td>\n",
|
158 |
+
" <td>216.229996</td>\n",
|
159 |
+
" <td>222.130005</td>\n",
|
160 |
+
" <td>65299300</td>\n",
|
161 |
+
" <td>0.0</td>\n",
|
162 |
+
" <td>0.0</td>\n",
|
163 |
+
" </tr>\n",
|
164 |
+
" <tr>\n",
|
165 |
+
" <th>1</th>\n",
|
166 |
+
" <td>2025-04-01</td>\n",
|
167 |
+
" <td>219.809998</td>\n",
|
168 |
+
" <td>223.679993</td>\n",
|
169 |
+
" <td>218.899994</td>\n",
|
170 |
+
" <td>223.190002</td>\n",
|
171 |
+
" <td>36412700</td>\n",
|
172 |
+
" <td>0.0</td>\n",
|
173 |
+
" <td>0.0</td>\n",
|
174 |
+
" </tr>\n",
|
175 |
+
" <tr>\n",
|
176 |
+
" <th>2</th>\n",
|
177 |
+
" <td>2025-04-02</td>\n",
|
178 |
+
" <td>221.320007</td>\n",
|
179 |
+
" <td>225.190002</td>\n",
|
180 |
+
" <td>221.020004</td>\n",
|
181 |
+
" <td>223.889999</td>\n",
|
182 |
+
" <td>35905900</td>\n",
|
183 |
+
" <td>0.0</td>\n",
|
184 |
+
" <td>0.0</td>\n",
|
185 |
+
" </tr>\n",
|
186 |
+
" <tr>\n",
|
187 |
+
" <th>3</th>\n",
|
188 |
+
" <td>2025-04-03</td>\n",
|
189 |
+
" <td>205.539993</td>\n",
|
190 |
+
" <td>207.490005</td>\n",
|
191 |
+
" <td>201.250000</td>\n",
|
192 |
+
" <td>203.190002</td>\n",
|
193 |
+
" <td>103419000</td>\n",
|
194 |
+
" <td>0.0</td>\n",
|
195 |
+
" <td>0.0</td>\n",
|
196 |
+
" </tr>\n",
|
197 |
+
" <tr>\n",
|
198 |
+
" <th>4</th>\n",
|
199 |
+
" <td>2025-04-04</td>\n",
|
200 |
+
" <td>193.889999</td>\n",
|
201 |
+
" <td>199.880005</td>\n",
|
202 |
+
" <td>187.339996</td>\n",
|
203 |
+
" <td>188.380005</td>\n",
|
204 |
+
" <td>125910900</td>\n",
|
205 |
+
" <td>0.0</td>\n",
|
206 |
+
" <td>0.0</td>\n",
|
207 |
+
" </tr>\n",
|
208 |
+
" </tbody>\n",
|
209 |
+
"</table>\n",
|
210 |
+
"</div>"
|
211 |
+
],
|
212 |
+
"text/plain": [
|
213 |
+
" Date Open High Low Close Volume Dividends Stock Splits\n",
|
214 |
+
"0 2025-03-31 217.009995 225.619995 216.229996 222.130005 65299300 0.0 0.0\n",
|
215 |
+
"1 2025-04-01 219.809998 223.679993 218.899994 223.190002 36412700 0.0 0.0\n",
|
216 |
+
"2 2025-04-02 221.320007 225.190002 221.020004 223.889999 35905900 0.0 0.0\n",
|
217 |
+
"3 2025-04-03 205.539993 207.490005 201.250000 203.190002 103419000 0.0 0.0\n",
|
218 |
+
"4 2025-04-04 193.889999 199.880005 187.339996 188.380005 125910900 0.0 0.0"
|
219 |
+
]
|
220 |
+
},
|
221 |
+
"metadata": {},
|
222 |
+
"output_type": "display_data"
|
223 |
+
}
|
224 |
+
],
|
225 |
+
"source": [
|
226 |
+
"# Fetch Stock Data\n",
|
227 |
+
"print(\"Fetching stock data...\")\n",
|
228 |
+
"stock_df = get_stock_data(TICKER, START_DATE, END_DATE)\n",
|
229 |
+
"\n",
|
230 |
+
"if stock_df is not None:\n",
|
231 |
+
" print(f\"Successfully fetched {len(stock_df)} days of stock data.\")\n",
|
232 |
+
" display(stock_df.head())\n",
|
233 |
+
"else:\n",
|
234 |
+
" print(\"Failed to fetch stock data.\")"
|
235 |
+
]
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"cell_type": "code",
|
239 |
+
"execution_count": null,
|
240 |
+
"id": "45b2014d",
|
241 |
+
"metadata": {},
|
242 |
+
"outputs": [
|
243 |
+
{
|
244 |
+
"name": "stdout",
|
245 |
+
"output_type": "stream",
|
246 |
+
"text": [
|
247 |
+
"Fetching news articles...\n",
|
248 |
+
"Found 853 articles for 'AAPL'\n"
|
249 |
+
]
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"ename": "AttributeError",
|
253 |
+
"evalue": "'list' object has no attribute 'empty'",
|
254 |
+
"output_type": "error",
|
255 |
+
"traceback": [
|
256 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
257 |
+
"\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
258 |
+
"Cell \u001b[1;32mIn[20], line 4\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFetching news articles...\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 3\u001b[0m news_df \u001b[38;5;241m=\u001b[39m get_news_articles(TICKER, START_DATE, END_DATE)\n\u001b[1;32m----> 4\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m news_df \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[43mnews_df\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mempty\u001b[49m:\n\u001b[0;32m 5\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSuccessfully fetched \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mlen\u001b[39m(news_df)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m news articles.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 6\u001b[0m display(news_df\u001b[38;5;241m.\u001b[39mhead())\n",
|
259 |
+
"\u001b[1;31mAttributeError\u001b[0m: 'list' object has no attribute 'empty'"
|
260 |
+
]
|
261 |
+
}
|
262 |
+
],
|
263 |
+
"source": [
|
264 |
+
"# Fetch News Articles\n",
|
265 |
+
"print(\"Fetching news articles...\")\n",
|
266 |
+
"articles_list = get_news_articles(TICKER, START_DATE, END_DATE)\n",
|
267 |
+
"\n",
|
268 |
+
"# Convert the list of articles to a DataFrame\n",
|
269 |
+
"if articles_list is not None:\n",
|
270 |
+
" news_df = pd.DataFrame(articles_list)\n",
|
271 |
+
" # Convert publishedAt to datetime and extract date\n",
|
272 |
+
" if 'publishedAt' in news_df.columns:\n",
|
273 |
+
" news_df['publishedAt'] = pd.to_datetime(news_df['publishedAt'])\n",
|
274 |
+
" news_df['date'] = news_df['publishedAt'].dt.date\n",
|
275 |
+
" else:\n",
|
276 |
+
" news_df['date'] = None # Handle case where publishedAt might be missing\n",
|
277 |
+
"else:\n",
|
278 |
+
" news_df = pd.DataFrame() # Create an empty DataFrame if fetching failed\n",
|
279 |
+
"\n",
|
280 |
+
"# Now check the DataFrame\n",
|
281 |
+
"if not news_df.empty:\n",
|
282 |
+
" print(f\"Successfully fetched and converted {len(news_df)} news articles to DataFrame.\")\n",
|
283 |
+
" display(news_df[['date', 'title', 'description', 'source']].head()) # Display relevant columns\n",
|
284 |
+
"else:\n",
|
285 |
+
" print(\"No news articles found or failed to create DataFrame.\")"
|
286 |
+
]
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"cell_type": "markdown",
|
290 |
+
"id": "060f293c",
|
291 |
+
"metadata": {},
|
292 |
+
"source": [
|
293 |
+
"## 4. Sentiment Analysis\n",
|
294 |
+
"\n",
|
295 |
+
"Apply sentiment analysis to the fetched news articles."
|
296 |
+
]
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"cell_type": "code",
|
300 |
+
"execution_count": null,
|
301 |
+
"id": "23508f73",
|
302 |
+
"metadata": {},
|
303 |
+
"outputs": [
|
304 |
+
{
|
305 |
+
"name": "stdout",
|
306 |
+
"output_type": "stream",
|
307 |
+
"text": [
|
308 |
+
"Skipping sentiment analysis as no news articles were successfully fetched or the DataFrame is empty.\n"
|
309 |
+
]
|
310 |
+
}
|
311 |
+
],
|
312 |
+
"source": [
|
313 |
+
"from src.sentiment_analyzer import analyze_sentiment\n",
|
314 |
+
"# Check if news_df exists and is not empty\n",
|
315 |
+
"if 'news_df' in locals() and not news_df.empty:\n",
|
316 |
+
" print(f\"Performing sentiment analysis on {len(news_df)} articles...\")\n",
|
317 |
+
" # Combine title and description for better context (handle None values)\n",
|
318 |
+
" news_df['text_to_analyze'] = news_df['title'].fillna('') + \". \" + news_df['description'].fillna('')\n",
|
319 |
+
" # Apply the sentiment analysis function\n",
|
320 |
+
" # This might take a while depending on the number of articles and your hardware\n",
|
321 |
+
" sentiment_results = news_df['text_to_analyze'].apply(lambda x: analyze_sentiment(x) if pd.notna(x) else (None, None, None))\n",
|
322 |
+
" # Unpack results into separate columns\n",
|
323 |
+
" news_df['sentiment_label'] = sentiment_results.apply(lambda x: x[0])\n",
|
324 |
+
" news_df['sentiment_score'] = sentiment_results.apply(lambda x: x[1])\n",
|
325 |
+
" news_df['sentiment_scores_all'] = sentiment_results.apply(lambda x: x[2])\n",
|
326 |
+
" # Display the results\n",
|
327 |
+
" print(\"Sentiment analysis complete.\")\n",
|
328 |
+
" display(news_df[['date', 'title', 'sentiment_label', 'sentiment_score']].head())\n",
|
329 |
+
" # Display value counts for sentiment labels\n",
|
330 |
+
" print(\"\\nSentiment Label Distribution:\")\n",
|
331 |
+
" print(news_df['sentiment_label'].value_counts())\n",
|
332 |
+
"else:\n",
|
333 |
+
" print(\"Skipping sentiment analysis as no news articles were successfully fetched or the DataFrame is empty.\")"
|
334 |
+
]
|
335 |
+
}
|
336 |
+
],
|
337 |
+
"metadata": {
|
338 |
+
"kernelspec": {
|
339 |
+
"display_name": ".venv",
|
340 |
+
"language": "python",
|
341 |
+
"name": "python3"
|
342 |
+
},
|
343 |
+
"language_info": {
|
344 |
+
"codemirror_mode": {
|
345 |
+
"name": "ipython",
|
346 |
+
"version": 3
|
347 |
+
},
|
348 |
+
"file_extension": ".py",
|
349 |
+
"mimetype": "text/x-python",
|
350 |
+
"name": "python",
|
351 |
+
"nbconvert_exporter": "python",
|
352 |
+
"pygments_lexer": "ipython3",
|
353 |
+
"version": "3.10.6"
|
354 |
+
}
|
355 |
+
},
|
356 |
+
"nbformat": 4,
|
357 |
+
"nbformat_minor": 5
|
358 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
yfinance
|
3 |
+
newsapi-python
|
4 |
+
jupyter
|
5 |
+
torch
|
6 |
+
transformers
|
7 |
+
scikit-learn
|
8 |
+
matplotlib
|
9 |
+
nltk
|
10 |
+
python-dotenv
|
src/data_fetcher.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yfinance as yf
|
2 |
+
import pandas as pd
|
3 |
+
from newsapi import NewsApiClient
|
4 |
+
import os
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from datetime import datetime, timedelta
|
7 |
+
|
8 |
+
def load_api_keys():
|
9 |
+
"""Loads API keys from the .env file."""
|
10 |
+
load_dotenv()
|
11 |
+
news_api_key = os.getenv("NEWS_API_KEY")
|
12 |
+
alpha_vantage_key = os.getenv("ALPHA_VANTAGE_KEY") # Add ALPHA_VANTAGE_KEY=YOUR_KEY to .env if using
|
13 |
+
if not news_api_key:
|
14 |
+
print("Warning: NEWS_API_KEY not found in .env file.")
|
15 |
+
# Add similar check for alpha_vantage_key if you plan to use it
|
16 |
+
return news_api_key, alpha_vantage_key
|
17 |
+
|
18 |
+
def get_stock_data(ticker, start_date, end_date):
|
19 |
+
"""
|
20 |
+
Fetches historical stock data for a given ticker symbol.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
ticker (str): The stock ticker symbol (e.g., 'AAPL').
|
24 |
+
start_date (str): Start date in 'YYYY-MM-DD' format.
|
25 |
+
end_date (str): End date in 'YYYY-MM-DD' format.
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
pandas.DataFrame: DataFrame containing historical stock data, or None if an error occurs.
|
29 |
+
"""
|
30 |
+
try:
|
31 |
+
stock = yf.Ticker(ticker)
|
32 |
+
hist = stock.history(start=start_date, end=end_date)
|
33 |
+
if hist.empty:
|
34 |
+
print(f"No data found for {ticker} between {start_date} and {end_date}.")
|
35 |
+
return None
|
36 |
+
hist.reset_index(inplace=True) # Make Date a column
|
37 |
+
hist['Date'] = pd.to_datetime(hist['Date']).dt.date # Keep only the date part
|
38 |
+
return hist
|
39 |
+
except Exception as e:
|
40 |
+
print(f"Error fetching stock data for {ticker}: {e}")
|
41 |
+
return None
|
42 |
+
|
43 |
+
def get_news_articles(query, from_date, to_date, language='en', sort_by='relevancy', page_size=100):
|
44 |
+
"""
|
45 |
+
Fetches news articles related to a query within a date range using NewsAPI.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
query (str): The search query (e.g., 'Apple stock').
|
49 |
+
from_date (str): Start date in 'YYYY-MM-DD' format.
|
50 |
+
to_date (str): End date in 'YYYY-MM-DD' format.
|
51 |
+
language (str): Language of the articles (default: 'en').
|
52 |
+
sort_by (str): Sorting criteria (default: 'relevancy'). Options: 'relevancy', 'popularity', 'publishedAt'.
|
53 |
+
page_size (int): Number of results per page (max 100 for developer plan).
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
list: A list of dictionaries, where each dictionary represents an article, or None if an error occurs.
|
57 |
+
Returns an empty list if no articles are found.
|
58 |
+
"""
|
59 |
+
print(f"Attempting to fetch news with query: '{query}'") # Added print
|
60 |
+
print(f"Date range: {from_date} to {to_date}") # Added print
|
61 |
+
news_api_key, _ = load_api_keys()
|
62 |
+
if not news_api_key:
|
63 |
+
print("Error: NewsAPI key not available. Cannot fetch news.") # Made error clearer
|
64 |
+
return None
|
65 |
+
|
66 |
+
try:
|
67 |
+
newsapi = NewsApiClient(api_key=news_api_key)
|
68 |
+
# NewsAPI free tier only allows searching articles up to one month old
|
69 |
+
# Ensure from_date is not too far in the past if using free tier
|
70 |
+
one_month_ago = (datetime.now() - timedelta(days=29)).strftime('%Y-%m-%d') # Use 29 days to be safe
|
71 |
+
print(f"One month ago date limit (approx): {one_month_ago}") # Added print
|
72 |
+
if from_date < one_month_ago:
|
73 |
+
print(f"Warning: NewsAPI free tier limits searches to the past month. Adjusting from_date from {from_date} to {one_month_ago}")
|
74 |
+
from_date = one_month_ago
|
75 |
+
|
76 |
+
print(f"Calling NewsAPI with: q='{query}', from='{from_date}', to='{to_date}', page_size={page_size}") # Added print
|
77 |
+
all_articles = newsapi.get_everything(q=query,
|
78 |
+
from_param=from_date,
|
79 |
+
to=to_date,
|
80 |
+
language=language,
|
81 |
+
sort_by=sort_by,
|
82 |
+
page_size=page_size) # Max 100 for free tier
|
83 |
+
|
84 |
+
print(f"NewsAPI response status: {all_articles.get('status')}") # Added print
|
85 |
+
if all_articles['status'] == 'ok':
|
86 |
+
total_results = all_articles['totalResults']
|
87 |
+
print(f"Found {total_results} articles for '{query}'")
|
88 |
+
if total_results == 0:
|
89 |
+
print("Warning: NewsAPI returned 0 articles for this query and date range.") # Added warning
|
90 |
+
return all_articles['articles']
|
91 |
+
else:
|
92 |
+
error_code = all_articles.get('code')
|
93 |
+
error_message = all_articles.get('message')
|
94 |
+
print(f"Error fetching news from NewsAPI. Code: {error_code}, Message: {error_message}") # More detailed error
|
95 |
+
return None
|
96 |
+
except Exception as e:
|
97 |
+
print(f"Exception occurred while connecting to NewsAPI: {e}") # Clarified exception source
|
98 |
+
return None
|
99 |
+
|
100 |
+
# Placeholder for Alpha Vantage data fetching
|
101 |
+
def get_alpha_vantage_data(symbol):
|
102 |
+
"""Placeholder function to fetch data using Alpha Vantage."""
|
103 |
+
_, alpha_vantage_key = load_api_keys()
|
104 |
+
if not alpha_vantage_key:
|
105 |
+
print("Alpha Vantage API key not found in .env file.")
|
106 |
+
return None
|
107 |
+
print(f"Fetching data for {symbol} using Alpha Vantage (implementation pending)...")
|
108 |
+
# Add Alpha Vantage API call logic here
|
109 |
+
return None
|
110 |
+
|
111 |
+
if __name__ == '__main__':
|
112 |
+
# Example usage (for testing the module directly)
|
113 |
+
ticker = 'AAPL'
|
114 |
+
end_date = datetime.now().strftime('%Y-%m-%d')
|
115 |
+
start_date = (datetime.now() - timedelta(days=30)).strftime('%Y-%m-%d') # Look back 30 days
|
116 |
+
|
117 |
+
print(f"--- Testing Stock Data Fetching ({ticker}) ---")
|
118 |
+
stock_data = get_stock_data(ticker, start_date, end_date)
|
119 |
+
if stock_data is not None:
|
120 |
+
print(f"Successfully fetched {len(stock_data)} rows of stock data.")
|
121 |
+
print(stock_data.head())
|
122 |
+
else:
|
123 |
+
print("Failed to fetch stock data.")
|
124 |
+
|
125 |
+
print(f"\n--- Testing News Article Fetching ({ticker}) ---")
|
126 |
+
news_query = f"{ticker} stock"
|
127 |
+
articles = get_news_articles(news_query, start_date, end_date)
|
128 |
+
if articles is not None:
|
129 |
+
print(f"Successfully fetched {len(articles)} articles.")
|
130 |
+
if articles:
|
131 |
+
print("First article title:", articles[0]['title'])
|
132 |
+
else:
|
133 |
+
print("Failed to fetch news articles.")
|
134 |
+
|
135 |
+
# print("\n--- Testing Alpha Vantage (Placeholder) ---")
|
136 |
+
# get_alpha_vantage_data(ticker)
|
src/sentiment_analyzer.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load the FinBERT model and tokenizer
|
7 |
+
# This might download the model files the first time it's run
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("ProsusAI/finbert")
|
9 |
+
model = AutoModelForSequenceClassification.from_pretrained("ProsusAI/finbert")
|
10 |
+
|
11 |
+
def analyze_sentiment(text):
|
12 |
+
"""
|
13 |
+
Analyzes the sentiment of a given text using the FinBERT model.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
text (str): The input text (e.g., news headline or description).
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
tuple: A tuple containing:
|
20 |
+
- sentiment_label (str): 'positive', 'negative', or 'neutral'.
|
21 |
+
- sentiment_score (float): The probability score of the predicted sentiment.
|
22 |
+
- scores (dict): Dictionary containing probabilities for all labels ('positive', 'negative', 'neutral').
|
23 |
+
Returns (None, None, None) if the input is invalid or an error occurs.
|
24 |
+
"""
|
25 |
+
if not isinstance(text, str) or not text.strip():
|
26 |
+
return None, None, None # Return None for empty or invalid input
|
27 |
+
|
28 |
+
try:
|
29 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512, padding=True)
|
30 |
+
with torch.no_grad(): # Disable gradient calculation for inference
|
31 |
+
outputs = model(**inputs)
|
32 |
+
|
33 |
+
# Get probabilities using softmax
|
34 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
35 |
+
scores = probabilities[0].numpy() # Get scores for the first (and only) input
|
36 |
+
|
37 |
+
# Get the predicted sentiment label index
|
38 |
+
predicted_class_id = np.argmax(scores)
|
39 |
+
|
40 |
+
# Map index to label based on model config
|
41 |
+
sentiment_label = model.config.id2label[predicted_class_id]
|
42 |
+
sentiment_score = scores[predicted_class_id]
|
43 |
+
|
44 |
+
all_scores = {model.config.id2label[i]: scores[i] for i in range(len(scores))}
|
45 |
+
|
46 |
+
return sentiment_label, float(sentiment_score), {k: float(v) for k, v in all_scores.items()}
|
47 |
+
|
48 |
+
except Exception as e:
|
49 |
+
print(f"Error during sentiment analysis for text: '{text[:50]}...': {e}")
|
50 |
+
return None, None, None
|
51 |
+
|
52 |
+
# Example usage (for testing the module directly)
|
53 |
+
if __name__ == '__main__':
|
54 |
+
test_texts = [
|
55 |
+
"Stocks rallied on positive economic news.",
|
56 |
+
"The company reported a significant drop in profits.",
|
57 |
+
"Market remains flat amid uncertainty.",
|
58 |
+
"", # Empty string test
|
59 |
+
None # None test
|
60 |
+
]
|
61 |
+
|
62 |
+
print("--- Testing Sentiment Analysis ---")
|
63 |
+
for t in test_texts:
|
64 |
+
label, score, all_scores_dict = analyze_sentiment(t)
|
65 |
+
if label:
|
66 |
+
print(f"Text: '{t}'")
|
67 |
+
print(f" Sentiment: {label} (Score: {score:.4f})")
|
68 |
+
print(f" All Scores: {all_scores_dict}")
|
69 |
+
else:
|
70 |
+
print(f"Text: '{t}' -> Invalid input or error during analysis.")
|
src/utils.py
ADDED
File without changes
|