File size: 24,779 Bytes
5135ab4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "3a800e93-1e4a-40de-a211-4244e8d1a161",
   "metadata": {},
   "outputs": [],
   "source": [
    "#!pip install -qU langchain-google-genai"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "764db45e-0ed0-480b-b338-2d7747d7746d",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_google_genai import ChatGoogleGenerativeAI\n",
    "from langchain.prompts import PromptTemplate\n",
    "from langchain.chains import LLMChain\n",
    "import os\n",
    "#from google.colab import userdata "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "d5b8529b-7206-4f51-804c-0a49b3242310",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "os.environ[\"MY_SECRET_KEY\"] = \"AIzaSyDRj3wAgqOCjc_D45W_u-G3y9dk5YDgxEo\"\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "f484e386-e7a8-44a9-9ad5-0ec977a8b618",
   "metadata": {},
   "outputs": [],
   "source": [
    "#pip install fastapi uvicorn google-generativeai"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "bcb32fd9-805c-409c-aa27-2745867daf41",
   "metadata": {},
   "outputs": [],
   "source": [
    "from fastapi import FastAPI\n",
    "import google.generativeai as genai\n",
    "from fastapi.middleware.cors import CORSMiddleware\n",
    "\n",
    "# Configure Google Gemini API\n",
    "from langchain_google_genai import ChatGoogleGenerativeAI"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "34b28dd0-5675-48ac-b07a-5ee27b5a04dd",
   "metadata": {},
   "outputs": [],
   "source": [
    "google_api_key = os.environ[\"MY_SECRET_KEY\"]\n",
    "\n",
    "# Check if the API key was found\n",
    "if google_api_key:\n",
    "    # Set the environment variable if the API key was found\n",
    "    os.environ[\"GOOGLE_API_KEY\"] = google_api_key\n",
    "\n",
    "    llm = ChatGoogleGenerativeAI(\n",
    "        model=\"gemini-pro\",  # Specify the model name\n",
    "        google_api_key=os.environ[\"GOOGLE_API_KEY\"]\n",
    "    )\n",
    "else:\n",
    "    print(\"Error: GOOGLE_API_KEY not found in Colab secrets. Please store your API key.\")\n",
    "\n",
    "\n",
    "\n",
    "genai.configure(api_key=google_api_key)\n",
    "model = genai.GenerativeModel(\"gemini-pro\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "c452755f-fad6-455f-9822-7c66b36d724f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Initialize FastAPI\n",
    "app = FastAPI()\n",
    "\n",
    "# Enable CORS for frontend access\n",
    "app.add_middleware(\n",
    "    CORSMiddleware,\n",
    "    allow_origins=[\"*\"],\n",
    "    allow_credentials=True,\n",
    "    allow_methods=[\"*\"],\n",
    "    allow_headers=[\"*\"],\n",
    ")\n",
    "\n",
    "@app.get(\"/chat\")\n",
    "def chat(query: str):\n",
    "    response = model.generate_content(query)\n",
    "    return {\"response\": response.text}\n",
    "\n",
    "# Run the server: uvicorn backend:app --reload"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "cde9c8d0-80a4-4943-a78a-a75ca4825e34",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/var/folders/y9/krs1m7td1p33yj75p9f1s5740000gn/T/ipykernel_11301/2071011701.py:7: LangChainDeprecationWarning: The class `LLMChain` was deprecated in LangChain 0.1.17 and will be removed in 1.0. Use :meth:`~RunnableSequence, e.g., `prompt | llm`` instead.\n",
      "  chain = LLMChain(llm=llm, prompt=prompt)\n",
      "/var/folders/y9/krs1m7td1p33yj75p9f1s5740000gn/T/ipykernel_11301/2071011701.py:11: LangChainDeprecationWarning: The method `Chain.run` was deprecated in langchain 0.1.0 and will be removed in 1.0. Use :meth:`~invoke` instead.\n",
      "  response = chain.run(query=query)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Chatbot Response: The capital of France is Paris.\n"
     ]
    }
   ],
   "source": [
    "prompt = PromptTemplate.from_template(\"Answer the following query: {query}\")\n",
    "\n",
    "# Initialize LLM\n",
    "llm = ChatGoogleGenerativeAI(model=\"gemini-2.0-flash\", temperature=0)\n",
    "\n",
    "# Create an LLM Chain\n",
    "chain = LLMChain(llm=llm, prompt=prompt)\n",
    "\n",
    "# Run chatbot\n",
    "query = \"What is the capital of France?\"\n",
    "response = chain.run(query=query)\n",
    "print(\"Chatbot Response:\", response)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "da1d9899-328b-47c2-87a5-4175519bacdc",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Chatbot Response: The capital of India is **New Delhi**.\n"
     ]
    }
   ],
   "source": [
    "# Run chatbot\n",
    "query = \"What is the capital of India?\"\n",
    "response = chain.run(query=query)\n",
    "print(\"Chatbot Response:\", response)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "d42c4cf2-8b96-4310-8692-350d0d9c85b4",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'/Users/saurabhverma/GENAI'"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "os.getcwd()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "161cd070-2ac4-422a-8199-2a7cc42ac335",
   "metadata": {},
   "outputs": [],
   "source": [
    "# UI with Gradio\n",
    "def chat_interface(question):\n",
    "    return rag_pipeline(question)\n",
    "\n",
    "ui = gr.Interface(fn=chat_interface, inputs=\"text\", outputs=\"text\", title=\"RAG Chat with Gemini\")\n",
    "ui.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "cc81ff71-c152-4780-bb90-31f1df623f7e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Collecting gradio\n",
      "  Downloading gradio-5.20.1-py3-none-any.whl.metadata (16 kB)\n",
      "Collecting aiofiles<24.0,>=22.0 (from gradio)\n",
      "  Downloading aiofiles-23.2.1-py3-none-any.whl.metadata (9.7 kB)\n",
      "Requirement already satisfied: anyio<5.0,>=3.0 in /opt/anaconda3/lib/python3.12/site-packages (from gradio) (4.2.0)\n",
      "Requirement already satisfied: fastapi<1.0,>=0.115.2 in /opt/anaconda3/lib/python3.12/site-packages (from gradio) (0.115.11)\n",
      "Collecting ffmpy (from gradio)\n",
      "  Downloading ffmpy-0.5.0-py3-none-any.whl.metadata (3.0 kB)\n",
      "Collecting gradio-client==1.7.2 (from gradio)\n",
      "  Downloading gradio_client-1.7.2-py3-none-any.whl.metadata (7.1 kB)\n",
      "Collecting groovy~=0.1 (from gradio)\n",
      "  Downloading groovy-0.1.2-py3-none-any.whl.metadata (6.1 kB)\n",
      "Requirement already satisfied: httpx>=0.24.1 in /opt/anaconda3/lib/python3.12/site-packages (from gradio) (0.27.0)\n",
      "Collecting huggingface-hub>=0.28.1 (from gradio)\n",
      "  Downloading huggingface_hub-0.29.2-py3-none-any.whl.metadata (13 kB)\n",
      "Requirement already satisfied: jinja2<4.0 in /opt/anaconda3/lib/python3.12/site-packages (from gradio) (3.1.4)\n",
      "Requirement already satisfied: markupsafe~=2.0 in /opt/anaconda3/lib/python3.12/site-packages (from gradio) (2.1.3)\n",
      "Requirement already satisfied: numpy<3.0,>=1.0 in /opt/anaconda3/lib/python3.12/site-packages (from gradio) (1.26.4)\n",
      "Requirement already satisfied: orjson~=3.0 in /opt/anaconda3/lib/python3.12/site-packages (from gradio) (3.10.15)\n",
      "Requirement already satisfied: packaging in /opt/anaconda3/lib/python3.12/site-packages (from gradio) (23.2)\n",
      "Requirement already satisfied: pandas<3.0,>=1.0 in /opt/anaconda3/lib/python3.12/site-packages (from gradio) (2.2.2)\n",
      "Requirement already satisfied: pillow<12.0,>=8.0 in /opt/anaconda3/lib/python3.12/site-packages (from gradio) (10.3.0)\n",
      "Requirement already satisfied: pydantic>=2.0 in /opt/anaconda3/lib/python3.12/site-packages (from gradio) (2.10.3)\n",
      "Collecting pydub (from gradio)\n",
      "  Downloading pydub-0.25.1-py2.py3-none-any.whl.metadata (1.4 kB)\n",
      "Collecting python-multipart>=0.0.18 (from gradio)\n",
      "  Downloading python_multipart-0.0.20-py3-none-any.whl.metadata (1.8 kB)\n",
      "Requirement already satisfied: pyyaml<7.0,>=5.0 in /opt/anaconda3/lib/python3.12/site-packages (from gradio) (6.0.1)\n",
      "Collecting ruff>=0.9.3 (from gradio)\n",
      "  Downloading ruff-0.9.10-py3-none-macosx_11_0_arm64.whl.metadata (25 kB)\n",
      "Collecting safehttpx<0.2.0,>=0.1.6 (from gradio)\n",
      "  Downloading safehttpx-0.1.6-py3-none-any.whl.metadata (4.2 kB)\n",
      "Collecting semantic-version~=2.0 (from gradio)\n",
      "  Downloading semantic_version-2.10.0-py2.py3-none-any.whl.metadata (9.7 kB)\n",
      "Requirement already satisfied: starlette<1.0,>=0.40.0 in /opt/anaconda3/lib/python3.12/site-packages (from gradio) (0.46.1)\n",
      "Collecting tomlkit<0.14.0,>=0.12.0 (from gradio)\n",
      "  Downloading tomlkit-0.13.2-py3-none-any.whl.metadata (2.7 kB)\n",
      "Collecting typer<1.0,>=0.12 (from gradio)\n",
      "  Downloading typer-0.15.2-py3-none-any.whl.metadata (15 kB)\n",
      "Requirement already satisfied: typing-extensions~=4.0 in /opt/anaconda3/lib/python3.12/site-packages (from gradio) (4.12.2)\n",
      "Requirement already satisfied: uvicorn>=0.14.0 in /opt/anaconda3/lib/python3.12/site-packages (from gradio) (0.34.0)\n",
      "Requirement already satisfied: fsspec in /opt/anaconda3/lib/python3.12/site-packages (from gradio-client==1.7.2->gradio) (2024.3.1)\n",
      "Collecting websockets<16.0,>=10.0 (from gradio-client==1.7.2->gradio)\n",
      "  Downloading websockets-15.0.1-cp312-cp312-macosx_11_0_arm64.whl.metadata (6.8 kB)\n",
      "Requirement already satisfied: idna>=2.8 in /opt/anaconda3/lib/python3.12/site-packages (from anyio<5.0,>=3.0->gradio) (3.7)\n",
      "Requirement already satisfied: sniffio>=1.1 in /opt/anaconda3/lib/python3.12/site-packages (from anyio<5.0,>=3.0->gradio) (1.3.0)\n",
      "Requirement already satisfied: certifi in /opt/anaconda3/lib/python3.12/site-packages (from httpx>=0.24.1->gradio) (2024.12.14)\n",
      "Requirement already satisfied: httpcore==1.* in /opt/anaconda3/lib/python3.12/site-packages (from httpx>=0.24.1->gradio) (1.0.2)\n",
      "Requirement already satisfied: h11<0.15,>=0.13 in /opt/anaconda3/lib/python3.12/site-packages (from httpcore==1.*->httpx>=0.24.1->gradio) (0.14.0)\n",
      "Requirement already satisfied: filelock in /opt/anaconda3/lib/python3.12/site-packages (from huggingface-hub>=0.28.1->gradio) (3.13.1)\n",
      "Requirement already satisfied: requests in /opt/anaconda3/lib/python3.12/site-packages (from huggingface-hub>=0.28.1->gradio) (2.32.2)\n",
      "Requirement already satisfied: tqdm>=4.42.1 in /opt/anaconda3/lib/python3.12/site-packages (from huggingface-hub>=0.28.1->gradio) (4.66.4)\n",
      "Requirement already satisfied: python-dateutil>=2.8.2 in /opt/anaconda3/lib/python3.12/site-packages (from pandas<3.0,>=1.0->gradio) (2.9.0.post0)\n",
      "Requirement already satisfied: pytz>=2020.1 in /opt/anaconda3/lib/python3.12/site-packages (from pandas<3.0,>=1.0->gradio) (2024.1)\n",
      "Requirement already satisfied: tzdata>=2022.7 in /opt/anaconda3/lib/python3.12/site-packages (from pandas<3.0,>=1.0->gradio) (2023.3)\n",
      "Requirement already satisfied: annotated-types>=0.6.0 in /opt/anaconda3/lib/python3.12/site-packages (from pydantic>=2.0->gradio) (0.6.0)\n",
      "Requirement already satisfied: pydantic-core==2.27.1 in /opt/anaconda3/lib/python3.12/site-packages (from pydantic>=2.0->gradio) (2.27.1)\n",
      "Requirement already satisfied: click>=8.0.0 in /opt/anaconda3/lib/python3.12/site-packages (from typer<1.0,>=0.12->gradio) (8.1.7)\n",
      "Requirement already satisfied: shellingham>=1.3.0 in /opt/anaconda3/lib/python3.12/site-packages (from typer<1.0,>=0.12->gradio) (1.5.0)\n",
      "Requirement already satisfied: rich>=10.11.0 in /opt/anaconda3/lib/python3.12/site-packages (from typer<1.0,>=0.12->gradio) (13.3.5)\n",
      "Requirement already satisfied: six>=1.5 in /opt/anaconda3/lib/python3.12/site-packages (from python-dateutil>=2.8.2->pandas<3.0,>=1.0->gradio) (1.16.0)\n",
      "Requirement already satisfied: markdown-it-py<3.0.0,>=2.2.0 in /opt/anaconda3/lib/python3.12/site-packages (from rich>=10.11.0->typer<1.0,>=0.12->gradio) (2.2.0)\n",
      "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /opt/anaconda3/lib/python3.12/site-packages (from rich>=10.11.0->typer<1.0,>=0.12->gradio) (2.15.1)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /opt/anaconda3/lib/python3.12/site-packages (from requests->huggingface-hub>=0.28.1->gradio) (2.0.4)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/anaconda3/lib/python3.12/site-packages (from requests->huggingface-hub>=0.28.1->gradio) (2.2.2)\n",
      "Requirement already satisfied: mdurl~=0.1 in /opt/anaconda3/lib/python3.12/site-packages (from markdown-it-py<3.0.0,>=2.2.0->rich>=10.11.0->typer<1.0,>=0.12->gradio) (0.1.0)\n",
      "Downloading gradio-5.20.1-py3-none-any.whl (62.3 MB)\n",
      "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.3/62.3 MB\u001b[0m \u001b[31m11.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
      "\u001b[?25hDownloading gradio_client-1.7.2-py3-none-any.whl (322 kB)\n",
      "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m322.1/322.1 kB\u001b[0m \u001b[31m12.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
      "\u001b[?25hDownloading aiofiles-23.2.1-py3-none-any.whl (15 kB)\n",
      "Downloading groovy-0.1.2-py3-none-any.whl (14 kB)\n",
      "Downloading huggingface_hub-0.29.2-py3-none-any.whl (468 kB)\n",
      "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m468.1/468.1 kB\u001b[0m \u001b[31m12.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
      "\u001b[?25hDownloading python_multipart-0.0.20-py3-none-any.whl (24 kB)\n",
      "Downloading ruff-0.9.10-py3-none-macosx_11_0_arm64.whl (10.2 MB)\n",
      "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.2/10.2 MB\u001b[0m \u001b[31m14.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m0:01\u001b[0m\n",
      "\u001b[?25hDownloading safehttpx-0.1.6-py3-none-any.whl (8.7 kB)\n",
      "Downloading semantic_version-2.10.0-py2.py3-none-any.whl (15 kB)\n",
      "Downloading tomlkit-0.13.2-py3-none-any.whl (37 kB)\n",
      "Downloading typer-0.15.2-py3-none-any.whl (45 kB)\n",
      "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.1/45.1 kB\u001b[0m \u001b[31m3.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
      "\u001b[?25hDownloading ffmpy-0.5.0-py3-none-any.whl (6.0 kB)\n",
      "Downloading pydub-0.25.1-py2.py3-none-any.whl (32 kB)\n",
      "Downloading websockets-15.0.1-cp312-cp312-macosx_11_0_arm64.whl (173 kB)\n",
      "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m173.3/173.3 kB\u001b[0m \u001b[31m12.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
      "\u001b[?25hInstalling collected packages: pydub, websockets, tomlkit, semantic-version, ruff, python-multipart, groovy, ffmpy, aiofiles, huggingface-hub, typer, safehttpx, gradio-client, gradio\n",
      "  Attempting uninstall: tomlkit\n",
      "    Found existing installation: tomlkit 0.11.1\n",
      "    Uninstalling tomlkit-0.11.1:\n",
      "      Successfully uninstalled tomlkit-0.11.1\n",
      "  Attempting uninstall: typer\n",
      "    Found existing installation: typer 0.9.0\n",
      "    Uninstalling typer-0.9.0:\n",
      "      Successfully uninstalled typer-0.9.0\n",
      "Successfully installed aiofiles-23.2.1 ffmpy-0.5.0 gradio-5.20.1 gradio-client-1.7.2 groovy-0.1.2 huggingface-hub-0.29.2 pydub-0.25.1 python-multipart-0.0.20 ruff-0.9.10 safehttpx-0.1.6 semantic-version-2.10.0 tomlkit-0.13.2 typer-0.15.2 websockets-15.0.1\n"
     ]
    }
   ],
   "source": [
    "#pip install -U langchain-community\n",
    "!pip install gradio"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "8c816fe4-5454-4e30-bbf9-cda7214943f5",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/var/folders/y9/krs1m7td1p33yj75p9f1s5740000gn/T/ipykernel_16004/3095841870.py:27: LangChainDeprecationWarning: The class `OpenAIEmbeddings` was deprecated in LangChain 0.0.9 and will be removed in 1.0. An updated version of the class exists in the :class:`~langchain-openai package and should be used instead. To use it run `pip install -U :class:`~langchain-openai` and import as `from :class:`~langchain_openai import OpenAIEmbeddings``.\n",
      "  vector_store = Chroma.from_documents(docs, embedding=OpenAIEmbeddings())\n"
     ]
    },
    {
     "ename": "ValidationError",
     "evalue": "1 validation error for OpenAIEmbeddings\n  Value error, Did not find openai_api_key, please add an environment variable `OPENAI_API_KEY` which contains it, or pass `openai_api_key` as a named parameter. [type=value_error, input_value={'model_kwargs': {}, 'cli...20, 'http_client': None}, input_type=dict]\n    For further information visit https://errors.pydantic.dev/2.10/v/value_error",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mValidationError\u001b[0m                           Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[11], line 27\u001b[0m\n\u001b[1;32m     25\u001b[0m \u001b[38;5;66;03m# Create Vector Database\u001b[39;00m\n\u001b[1;32m     26\u001b[0m docs \u001b[38;5;241m=\u001b[39m load_docs()\n\u001b[0;32m---> 27\u001b[0m vector_store \u001b[38;5;241m=\u001b[39m Chroma\u001b[38;5;241m.\u001b[39mfrom_documents(docs, embedding\u001b[38;5;241m=\u001b[39mOpenAIEmbeddings())\n\u001b[1;32m     29\u001b[0m \u001b[38;5;66;03m# RAG Pipeline: Retrieve and Generate\u001b[39;00m\n\u001b[1;32m     30\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrag_pipeline\u001b[39m(query):\n",
      "File \u001b[0;32m/opt/anaconda3/lib/python3.12/site-packages/langchain_core/_api/deprecation.py:214\u001b[0m, in \u001b[0;36mdeprecated.<locals>.deprecate.<locals>.finalize.<locals>.warn_if_direct_instance\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m    212\u001b[0m     warned \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m    213\u001b[0m     emit_warning()\n\u001b[0;32m--> 214\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m wrapped(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
      "File \u001b[0;32m/opt/anaconda3/lib/python3.12/site-packages/pydantic/main.py:214\u001b[0m, in \u001b[0;36mBaseModel.__init__\u001b[0;34m(self, **data)\u001b[0m\n\u001b[1;32m    212\u001b[0m \u001b[38;5;66;03m# `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks\u001b[39;00m\n\u001b[1;32m    213\u001b[0m __tracebackhide__ \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[0;32m--> 214\u001b[0m validated_self \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m__pydantic_validator__\u001b[38;5;241m.\u001b[39mvalidate_python(data, self_instance\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m)\n\u001b[1;32m    215\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m validated_self:\n\u001b[1;32m    216\u001b[0m     warnings\u001b[38;5;241m.\u001b[39mwarn(\n\u001b[1;32m    217\u001b[0m         \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mA custom validator is returning a value other than `self`.\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m    218\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mReturning anything other than `self` from a top level model validator isn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt supported when validating via `__init__`.\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m    219\u001b[0m         \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSee the `model_validator` docs (https://docs.pydantic.dev/latest/concepts/validators/#model-validators) for more details.\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m    220\u001b[0m         stacklevel\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2\u001b[39m,\n\u001b[1;32m    221\u001b[0m     )\n",
      "\u001b[0;31mValidationError\u001b[0m: 1 validation error for OpenAIEmbeddings\n  Value error, Did not find openai_api_key, please add an environment variable `OPENAI_API_KEY` which contains it, or pass `openai_api_key` as a named parameter. [type=value_error, input_value={'model_kwargs': {}, 'cli...20, 'http_client': None}, input_type=dict]\n    For further information visit https://errors.pydantic.dev/2.10/v/value_error"
     ]
    }
   ],
   "source": [
    "import google.generativeai as genai\n",
    "from langchain.vectorstores import Chroma\n",
    "from langchain.embeddings import OpenAIEmbeddings\n",
    "from langchain.schema import Document\n",
    "from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
    "from langchain_community.document_loaders import TextLoader\n",
    "import gradio as gr\n",
    "\n",
    "# Configure Google Gemini API\n",
    "GOOGLE_API_KEY = \"AIzaSyDRj3wAgqOCjc_D45W_u-G3y9dk5YDgxEo\"\n",
    "genai.configure(api_key=GOOGLE_API_KEY)\n",
    "model = genai.GenerativeModel(\"gemini-pro\")\n",
    "\n",
    "# Load and process documents\n",
    "def load_docs():\n",
    "    raw_text = \"\"\"\n",
    "    Machine learning is a branch of artificial intelligence (AI) focused on building applications that learn from data and improve their accuracy over time.\n",
    "    Supervised learning uses labeled data, while unsupervised learning finds hidden patterns.\n",
    "    Reinforcement learning is based on rewards and penalties.\n",
    "    \"\"\"\n",
    "    text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)\n",
    "    docs = [Document(page_content=text) for text in text_splitter.split_text(raw_text)]\n",
    "    return docs\n",
    "\n",
    "# Create Vector Database\n",
    "docs = load_docs()\n",
    "vector_store = Chroma.from_documents(docs, embedding=OpenAIEmbeddings())\n",
    "\n",
    "# RAG Pipeline: Retrieve and Generate\n",
    "def rag_pipeline(query):\n",
    "    results = vector_store.similarity_search(query, k=2)\n",
    "    context = \" \".join([doc.page_content for doc in results])\n",
    "    \n",
    "    # Pass context + query to Gemini\n",
    "    full_prompt = f\"Context: {context}\\n\\nQuestion: {query}\\nAnswer:\"\n",
    "    response = model.generate_content(full_prompt)\n",
    "    \n",
    "    return response.text\n",
    "\n",
    "# UI with Gradio\n",
    "def chat_interface(question):\n",
    "    return rag_pipeline(question)\n",
    "\n",
    "ui = gr.Interface(fn=chat_interface, inputs=\"text\", outputs=\"text\", title=\"RAG Chat with Gemini\")\n",
    "ui.launch()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "93bcb8cd-9202-45c1-98e3-9f9b06387fc2",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}