File size: 5,105 Bytes
f9b3fce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#!/usr/bin/env python
# coding: utf-8

# In[2]:


from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain

import os

import google.generativeai as genai
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
from langchain.vectorstores import FAISS
import gradio as gr


os.environ["MY_SECRET_KEY"] = "AIzaSyDRj3wAgqOCjc_D45W_u-G3y9dk5YDgxEo"


# In[3]:


#pip install pypdf
#!pip install faiss-cpu


# In[4]:


google_api_key = os.environ["MY_SECRET_KEY"]

# Check if the API key was found
if google_api_key:
    # Set the environment variable if the API key was found
    os.environ["GOOGLE_API_KEY"] = google_api_key

    llm = ChatGoogleGenerativeAI(
        model="gemini-pro",  # Specify the model name
        google_api_key=os.environ["GOOGLE_API_KEY"]
    )
else:
    print("Error: GOOGLE_API_KEY not found in Colab secrets. Please store your API key.")



genai.configure(api_key=google_api_key)
model = genai.GenerativeModel("gemini-pro")


# In[5]:


work_dir=os.getcwd()


# In[6]:


# Verify file existence
assert "Team1.pdf" in os.listdir(work_dir), "Team1.pdf not found in the specified directory!"
print(f"Current Working Directory: {os.getcwd()}")


# In[7]:


# Load PDF and split text
pdf_path = "Team1.pdf"  # Ensure this file is uploaded to Colab
loader = PyPDFLoader(pdf_path)
documents = loader.load()

# Split text into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=10)
text_chunks = text_splitter.split_documents(documents)


# In[8]:


# Generate embeddings
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")

# Store embeddings in FAISS index
vectorstore = FAISS.from_documents(text_chunks, embeddings)
retriever = vectorstore.as_retriever(search_kwargs={"k": 4})


# In[9]:


# Set up Gemini model
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-001", temperature=0)



# In[10]:


import gradio as gr
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain

def rag_query(query):
    # Retrieve relevant documents
    docs = retriever.get_relevant_documents(query)
    
    # Otherwise, use RAG
    context = "\n".join([doc.page_content for doc in docs])
    prompt = f"Context:\n{context}\n\nQuestion: {query}\nAnswer directly and concisely:"

    try:
        response = llm.invoke(prompt)
    except Exception as e:
        response = f"Error in RAG processing: {str(e)}"

    return response.content




# In[11]:


import gradio as gr
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_google_genai import ChatGoogleGenerativeAI

# Initialize LLM once (avoid repeated initialization)
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)

# Define the general query function
def general_query(query):
    try:
        # Define the prompt correctly
        prompt = PromptTemplate.from_template("Answer the following query: {query}")
        
        # Create an LLM Chain
        chain = LLMChain(llm=llm, prompt=prompt)
        
        # Run chatbot and return response
        response = chain.run(query=query)
        
        return response  # Return response directly (not response.content)
    
    except Exception as e:
        return f"Error: {str(e)}"



# In[12]:


import gradio as gr


# Function to call the selected query method
def query_router(query, method):
    if method == "Team Query":  # Ensure exact match with dropdown options
        return rag_query(query)
    elif method == "General Query":
        return general_query(query)
    return "Invalid selection!"

# Define local image paths
logo_path = "equinix-sign.jpg"  # Ensure this file exists

# Custom CSS for background styling
custom_css = """
.gradio-container {
    background-color: #f0f0f0;
    text-align: center;
}
#logo img {
    display: block;
    margin: 0 auto;
    max-width: 200px; /* Adjust size */
}
"""

# Create Gradio UI
with gr.Blocks(css=custom_css) as ui:
    gr.Image(logo_path, elem_id="logo", show_label=False, height=100, width=200)  # Display Logo
    
    # Title & Description
    gr.Markdown("<h1 style='text-align: center; color: black;'>Equinix Chatbot for Automation Team</h1>")
    gr.Markdown("<p style='text-align: center; color: black;'>Ask me anything!</p>")

    # Input & Dropdown Section
    with gr.Row():
        query_input = gr.Textbox(label="Enter your query")
        query_method = gr.Dropdown(["Team Query", "General Query"], label="Select Query Type")
    
    # Button for submitting query
    submit_button = gr.Button("Submit")

    # Output Textbox
    output_box = gr.Textbox(label="Response", interactive=False)

    # Button Click Event
    submit_button.click(query_router, inputs=[query_input, query_method], outputs=output_box)

# Launch UI
ui.launch(share=True)


# In[28]:


get_ipython().system('jupyter nbconvert -- GenAI_1.py')