Spaces:
Runtime error
Runtime error
File size: 11,295 Bytes
0bc1cb9 a1dcb35 8f8a72d a1dcb35 0612339 8866c4b a1dcb35 0612339 a1dcb35 0612339 a1dcb35 0612339 a1dcb35 0612339 8866c4b 0612339 a1dcb35 8866c4b 0612339 a1dcb35 8866c4b 0612339 8866c4b a1dcb35 8866c4b 0612339 8866c4b 0612339 a1dcb35 8866c4b 0612339 8866c4b a1dcb35 0612339 a1dcb35 0612339 8866c4b 0612339 8866c4b 0612339 8866c4b 0612339 8866c4b a1dcb35 0612339 a1dcb35 8f8a72d 8866c4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import os
import torch
import numpy as np
import PIL.Image
import subprocess
import time
from flask import Flask, request, render_template, send_file, url_for
from werkzeug.utils import secure_filename
# Set up Flask app
app = Flask(__name__)
# Define folders
UPLOAD_FOLDER = "uploads"
RESULT_FOLDER = "results"
MODELS_FOLDER = "models"
app.config["UPLOAD_FOLDER"] = UPLOAD_FOLDER
app.config["RESULT_FOLDER"] = RESULT_FOLDER
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(RESULT_FOLDER, exist_ok=True)
os.makedirs(MODELS_FOLDER, exist_ok=True)
# Function to download the StyleGAN3 model if it doesn't exist
def download_stylegan3_model():
network_pkl = os.path.join(MODELS_FOLDER, "stylegan3-r-ffhq-1024x1024.pkl")
# Check if model exists
if not os.path.exists(network_pkl):
print(f"StyleGAN3 model not found. Downloading to {network_pkl}...")
try:
# Download using subprocess for better feedback
result = subprocess.run([
"wget",
"https://nvlabs-fi-cdn.nvidia.com/stylegan3/pretrained/stylegan3-r-ffhq-1024x1024.pkl",
"-P", MODELS_FOLDER
], capture_output=True, text=True)
if result.returncode != 0:
print(f"wget failed: {result.stderr}")
print("Trying alternative download method with requests...")
# Fallback to requests if wget fails
import requests
response = requests.get("https://nvlabs-fi-cdn.nvidia.com/stylegan3/pretrained/stylegan3-r-ffhq-1024x1024.pkl", stream=True)
response.raise_for_status()
with open(network_pkl, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print("Download completed successfully using requests.")
else:
print("Download completed successfully using wget.")
return network_pkl
except Exception as e:
print(f"Error downloading StyleGAN3 model: {e}")
return None
else:
print(f"StyleGAN3 model already exists at {network_pkl}")
return network_pkl
# Create a simple dummy age direction vector if it doesn't exist
def create_dummy_age_direction():
age_direction_path = os.path.join(MODELS_FOLDER, "age_direction.pt")
if not os.path.exists(age_direction_path):
print("Creating a dummy age direction vector...")
try:
# Create a simple random vector as a placeholder
# In a real application, this would be a properly trained vector
dummy_vector = torch.randn(1, 512) # Assuming 512-dimensional latent space
torch.save(dummy_vector, age_direction_path)
print(f"Created dummy age direction vector at {age_direction_path}")
except Exception as e:
print(f"Error creating dummy age direction vector: {e}")
return age_direction_path
# Load StyleGAN3 Model
def load_stylegan3_model():
try:
# First ensure the model file exists
network_pkl = download_stylegan3_model()
if not network_pkl:
return None
# Make sure the age direction vector exists
create_dummy_age_direction()
# Import the legacy module for StyleGAN3
import sys
if not os.path.exists("legacy"):
print("Warning: 'legacy' module not found in current directory.")
print("StyleGAN3 requires this module to load models.")
print("You may need to clone the StyleGAN3 repository to get this module.")
return None
# Add current directory to path to find the legacy module
if "" not in sys.path:
sys.path.append("")
import legacy
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f'Loading networks from "{network_pkl}" using device {device}...')
with open(network_pkl, "rb") as f:
G = legacy.load_network_pkl(f)["G_ema"].to(device)
print("StyleGAN3 model loaded successfully!")
return G
except ImportError as e:
print(f"Import error: {e}")
print("Make sure you have the required modules for StyleGAN3.")
return None
except Exception as e:
print(f"Error loading StyleGAN3 model: {e}")
return None
# Attempt to load the model
G = load_stylegan3_model()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_loaded = G is not None
# Function to encode an image into latent space
def image_to_latent(image_path):
# Note: This is a simplified version. Actual image encoding to latent space
# requires techniques like optimization or encoder networks
if G is not None:
latent_vector = torch.randn(1, G.z_dim, device=device) # Generate random latent vector
else:
latent_vector = torch.randn(1, 512, device=device) # Assuming 512-dimensional latent space
return latent_vector
# Function to modify latent code to make the face look younger
def modify_age(latent_vector, age_factor=-2.0):
try:
age_direction_path = os.path.join(MODELS_FOLDER, "age_direction.pt")
age_direction = torch.load(age_direction_path).to(device) # Load precomputed age direction
new_latent_vector = latent_vector + age_factor * age_direction
return new_latent_vector
except Exception as e:
print(f"Error modifying age: {e}")
return latent_vector # Return original if error
# Function to generate an image from a latent code
def generate_image(latent_vector):
try:
if G is None:
# If model isn't loaded, return a placeholder image
return PIL.Image.new('RGB', (1024, 1024), color=(255, 255, 255))
img = G.synthesis(latent_vector, noise_mode="const")
img = (img + 1) * (255 / 2)
img = img.permute(0, 2, 3, 1).cpu().numpy()[0].astype(np.uint8)
return PIL.Image.fromarray(img)
except Exception as e:
print(f"Error generating image: {e}")
# Return a blank image if there's an error
return PIL.Image.new('RGB', (1024, 1024), color=(255, 255, 255))
# Flask Routes
@app.route("/", methods=["GET", "POST"])
def upload_file():
error_message = None
model_status = "Model loaded successfully" if model_loaded else "Model could not be loaded. See server logs for details."
if request.method == "POST":
if "file" not in request.files:
return render_template("index.html", error="No file uploaded", model_status=model_status)
file = request.files["file"]
if file.filename == "":
return render_template("index.html", error="No selected file", model_status=model_status)
if not model_loaded:
return render_template("index.html", error="StyleGAN3 model is not loaded. Cannot process images.", model_status=model_status)
try:
filename = secure_filename(file.filename)
input_path = os.path.join(app.config["UPLOAD_FOLDER"], filename)
file.save(input_path)
# Convert input image to latent vector
latent_code = image_to_latent(input_path)
# Modify latent code for a younger appearance
young_latent_code = modify_age(latent_code, age_factor=-2.0)
# Generate a younger-looking face
young_image = generate_image(young_latent_code)
output_path = os.path.join(app.config["RESULT_FOLDER"], "young_" + filename)
young_image.save(output_path)
return render_template("result.html", filename="young_" + filename)
except Exception as e:
error_message = f"Error processing image: {str(e)}"
return render_template("index.html", error=error_message, model_status=model_status)
return render_template("index.html", error=error_message, model_status=model_status)
@app.route("/results/<filename>")
def display_image(filename):
return send_file(os.path.join(app.config["RESULT_FOLDER"], filename))
@app.route("/download/<filename>")
def download_file(filename):
return send_file(os.path.join(app.config["RESULT_FOLDER"], filename), as_attachment=True)
# Create templates directory and files if they don't exist
def create_templates():
os.makedirs("templates", exist_ok=True)
# Create index.html
index_html = """<!DOCTYPE html>
<html>
<head>
<title>Image Age Reduction</title>
<style>
body { font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; padding: 20px; }
.container { border: 1px solid #ddd; padding: 20px; border-radius: 5px; }
.error { color: red; margin-bottom: 15px; }
.status { color: blue; margin-bottom: 15px; }
.form-group { margin-bottom: 15px; }
.btn { background-color: #4CAF50; color: white; padding: 10px 15px; border: none; cursor: pointer; }
</style>
</head>
<body>
<div class="container">
<h1>Image Age Reduction</h1>
{% if error %}
<div class="error">{{ error }}</div>
{% endif %}
{% if model_status %}
<div class="status">Model Status: {{ model_status }}</div>
{% endif %}
<form method="post" enctype="multipart/form-data">
<div class="form-group">
<label for="file">Select an image:</label>
<input type="file" name="file" id="file" accept="image/*" required>
</div>
<button type="submit" class="btn">Process Image</button>
</form>
</div>
</body>
</html>"""
# Create result.html
result_html = """<!DOCTYPE html>
<html>
<head>
<title>Processing Result</title>
<style>
body { font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; padding: 20px; }
.container { border: 1px solid #ddd; padding: 20px; border-radius: 5px; }
.result-img { max-width: 100%; margin: 20px 0; }
.btn { background-color: #4CAF50; color: white; padding: 10px 15px; border: none; cursor: pointer; text-decoration: none; display: inline-block; margin-right: 10px; }
.btn-back { background-color: #f44336; }
</style>
</head>
<body>
<div class="container">
<h1>Processing Result</h1>
<img src="{{ url_for('display_image', filename=filename) }}" class="result-img">
<div>
<a href="{{ url_for('download_file', filename=filename) }}" class="btn">Download</a>
<a href="{{ url_for('upload_file') }}" class="btn btn-back">Back</a>
</div>
</div>
</body>
</html>"""
# Write the template files
with open(os.path.join("templates", "index.html"), "w") as f:
f.write(index_html)
with open(os.path.join("templates", "result.html"), "w") as f:
f.write(result_html)
# Create the template files before running the app
create_templates()
# Run the Flask app
if __name__ == "__main__":
app.run(debug=True, host="0.0.0.0") |