|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
|
|
|
|
class IncrementalPCA: |
|
""" |
|
An implementation of Incremental Principal Components Analysis (IPCA) that leverages PyTorch for GPU acceleration. |
|
Adapted from https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/decomposition/_incremental_pca.py |
|
|
|
This class provides methods to fit the model on data incrementally in batches, and to transform new data based on |
|
the principal components learned during the fitting process. |
|
|
|
Args: |
|
n_components (int, optional): Number of components to keep. If `None`, it's set to the minimum of the |
|
number of samples and features. Defaults to None. |
|
copy (bool): If False, input data will be overwritten. Defaults to True. |
|
batch_size (int, optional): The number of samples to use for each batch. Only needed if self.fit is called. |
|
If `None`, it's inferred from the data and set to `5 * n_features`. Defaults to None. |
|
svd_driver (str, optional): name of the cuSOLVER method to be used for torch.linalg.svd. This keyword |
|
argument only works on CUDA inputs. Available options are: None, gesvd, gesvdj, and gesvda. Defaults to |
|
None. |
|
lowrank (bool, optional): Whether to use torch.svd_lowrank instead of torch.linalg.svd which can be faster. |
|
Defaults to False. |
|
lowrank_q (int, optional): For an adequate approximation of n_components, this parameter defaults to |
|
n_components * 2. |
|
lowrank_niter (int, optional): Number of subspace iterations to conduct for torch.svd_lowrank. |
|
Defaults to 4. |
|
lowrank_seed (int, optional): Seed for making results of torch.svd_lowrank reproducible. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
n_components: Optional[int] = None, |
|
copy: Optional[bool] = True, |
|
batch_size: Optional[int] = None, |
|
svd_driver: Optional[str] = None, |
|
lowrank: bool = False, |
|
lowrank_q: Optional[int] = None, |
|
lowrank_niter: int = 4, |
|
lowrank_seed: Optional[int] = None, |
|
): |
|
self.n_components = n_components |
|
self.copy = copy |
|
self.batch_size = batch_size |
|
self.svd_driver = svd_driver |
|
self.lowrank = lowrank |
|
self.lowrank_q = lowrank_q |
|
self.lowrank_niter = lowrank_niter |
|
self.lowrank_seed = lowrank_seed |
|
|
|
self.n_features_ = None |
|
|
|
if self.lowrank: |
|
self._validate_lowrank_params() |
|
|
|
def _validate_lowrank_params(self): |
|
if self.lowrank_q is None: |
|
if self.n_components is None: |
|
raise ValueError("n_components must be specified when using lowrank mode with lowrank_q=None.") |
|
self.lowrank_q = self.n_components * 2 |
|
elif self.lowrank_q < self.n_components: |
|
raise ValueError("lowrank_q must be greater than or equal to n_components.") |
|
|
|
def _svd_fn_full(self, X): |
|
return torch.linalg.svd(X, full_matrices=False, driver=self.svd_driver) |
|
|
|
def _svd_fn_lowrank(self, X): |
|
seed_enabled = self.lowrank_seed is not None |
|
with torch.random.fork_rng(enabled=seed_enabled): |
|
if seed_enabled: |
|
torch.manual_seed(self.lowrank_seed) |
|
U, S, V = torch.svd_lowrank(X, q=self.lowrank_q, niter=self.lowrank_niter) |
|
return U, S, V.mH |
|
|
|
def _validate_data(self, X) -> torch.Tensor: |
|
""" |
|
Validates and converts the input data `X` to the appropriate tensor format. |
|
|
|
Args: |
|
X (torch.Tensor): Input data. |
|
|
|
Returns: |
|
torch.Tensor: Converted to appropriate format. |
|
""" |
|
valid_dtypes = [torch.float32, torch.float64] |
|
|
|
if not isinstance(X, torch.Tensor): |
|
X = torch.tensor(X, dtype=torch.float32) |
|
elif self.copy: |
|
X = X.clone() |
|
|
|
n_samples, n_features = X.shape |
|
if self.n_components is None: |
|
pass |
|
elif self.n_components > n_features: |
|
raise ValueError( |
|
f"n_components={self.n_components} invalid for n_features={n_features}, " |
|
"need more rows than columns for IncrementalPCA processing." |
|
) |
|
elif self.n_components > n_samples: |
|
raise ValueError( |
|
f"n_components={self.n_components} must be less or equal to the batch number of samples {n_samples}" |
|
) |
|
|
|
if X.dtype not in valid_dtypes: |
|
X = X.to(torch.float32) |
|
|
|
return X |
|
|
|
@staticmethod |
|
def _incremental_mean_and_var( |
|
X, last_mean, last_variance, last_sample_count |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
""" |
|
Computes the incremental mean and variance for the data `X`. |
|
|
|
Args: |
|
X (torch.Tensor): The batch input data tensor with shape (n_samples, n_features). |
|
last_mean (torch.Tensor): The previous mean tensor with shape (n_features,). |
|
last_variance (torch.Tensor): The previous variance tensor with shape (n_features,). |
|
last_sample_count (torch.Tensor): The count tensor of samples processed before the current batch. |
|
|
|
Returns: |
|
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Updated mean, variance tensors, and total sample count. |
|
""" |
|
if X.shape[0] == 0: |
|
return last_mean, last_variance, last_sample_count |
|
|
|
if last_sample_count > 0: |
|
if last_mean is None: |
|
raise ValueError("last_mean should not be None if last_sample_count > 0.") |
|
if last_variance is None: |
|
raise ValueError("last_variance should not be None if last_sample_count > 0.") |
|
|
|
new_sample_count = torch.tensor([X.shape[0]], device=X.device) |
|
updated_sample_count = last_sample_count + new_sample_count |
|
|
|
if last_mean is None: |
|
last_sum = torch.zeros(X.shape[1], dtype=torch.float64, device=X.device) |
|
else: |
|
last_sum = last_mean * last_sample_count |
|
|
|
new_sum = X.sum(dim=0, dtype=torch.float64) |
|
|
|
updated_mean = (last_sum + new_sum) / updated_sample_count |
|
|
|
T = new_sum / new_sample_count |
|
temp = X - T |
|
correction = temp.sum(dim=0, dtype=torch.float64).square() |
|
temp.square_() |
|
new_unnormalized_variance = temp.sum(dim=0, dtype=torch.float64) |
|
new_unnormalized_variance -= correction / new_sample_count |
|
if last_variance is None: |
|
updated_variance = new_unnormalized_variance / updated_sample_count |
|
else: |
|
last_unnormalized_variance = last_variance * last_sample_count |
|
last_over_new_count = last_sample_count.double() / new_sample_count |
|
updated_unnormalized_variance = ( |
|
last_unnormalized_variance |
|
+ new_unnormalized_variance |
|
+ last_over_new_count / updated_sample_count * (last_sum / last_over_new_count - new_sum).square() |
|
) |
|
updated_variance = updated_unnormalized_variance / updated_sample_count |
|
|
|
return updated_mean, updated_variance, updated_sample_count |
|
|
|
@staticmethod |
|
def _svd_flip(u, v, u_based_decision=True) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Adjusts the signs of the singular vectors from the SVD decomposition for deterministic output. |
|
|
|
This method ensures that the output remains consistent across different runs. |
|
|
|
Args: |
|
u (torch.Tensor): Left singular vectors tensor. |
|
v (torch.Tensor): Right singular vectors tensor. |
|
u_based_decision (bool, optional): If True, uses the left singular vectors to determine the sign flipping. |
|
Defaults to True. |
|
|
|
Returns: |
|
Tuple[torch.Tensor, torch.Tensor]: Adjusted left and right singular vectors tensors. |
|
""" |
|
if u_based_decision: |
|
max_abs_cols = torch.argmax(torch.abs(u), dim=0) |
|
signs = torch.sign(u[max_abs_cols, range(u.shape[1])]) |
|
else: |
|
max_abs_rows = torch.argmax(torch.abs(v), dim=1) |
|
signs = torch.sign(v[range(v.shape[0]), max_abs_rows]) |
|
u *= signs[: u.shape[1]].view(1, -1) |
|
v *= signs.view(-1, 1) |
|
return u, v |
|
|
|
def fit(self, X, check_input=True): |
|
""" |
|
Fits the model with data `X` using minibatches of size `batch_size`. |
|
|
|
Args: |
|
X (torch.Tensor): The input data tensor with shape (n_samples, n_features). |
|
check_input (bool, optional): If True, validates the input. Defaults to True. |
|
|
|
Returns: |
|
IncrementalPCA: The fitted IPCA model. |
|
""" |
|
if check_input: |
|
X = self._validate_data(X) |
|
n_samples, n_features = X.shape |
|
if self.batch_size is None: |
|
self.batch_size = 5 * n_features |
|
|
|
for batch in self.gen_batches(n_samples, self.batch_size, min_batch_size=self.n_components or 0): |
|
self.partial_fit(X[batch], check_input=False) |
|
|
|
return self |
|
|
|
def partial_fit(self, X, check_input=True): |
|
""" |
|
Incrementally fits the model with batch data `X`. |
|
|
|
Args: |
|
X (torch.Tensor): The batch input data tensor with shape (n_samples, n_features). |
|
check_input (bool, optional): If True, validates the input. Defaults to True. |
|
|
|
Returns: |
|
IncrementalPCA: The updated IPCA model after processing the batch. |
|
""" |
|
first_pass = not hasattr(self, "components_") |
|
|
|
if check_input: |
|
X = self._validate_data(X) |
|
n_samples, n_features = X.shape |
|
|
|
|
|
if first_pass: |
|
self.mean_ = None |
|
self.var_ = None |
|
self.n_samples_seen_ = torch.tensor([0], device=X.device) |
|
self.n_features_ = n_features |
|
if not self.n_components: |
|
self.n_components = min(n_samples, n_features) |
|
|
|
if n_features != self.n_features_: |
|
raise ValueError( |
|
"Number of features of the new batch does not match the number of features of the first batch." |
|
) |
|
|
|
col_mean, col_var, n_total_samples = self._incremental_mean_and_var( |
|
X, self.mean_, self.var_, self.n_samples_seen_ |
|
) |
|
|
|
if first_pass: |
|
X -= col_mean |
|
else: |
|
col_batch_mean = torch.mean(X, dim=0) |
|
X -= col_batch_mean |
|
mean_correction_factor = torch.sqrt((self.n_samples_seen_.double() / n_total_samples) * n_samples) |
|
mean_correction = mean_correction_factor * (self.mean_ - col_batch_mean) |
|
X = torch.vstack( |
|
( |
|
self.singular_values_.view((-1, 1)) * self.components_, |
|
X, |
|
mean_correction, |
|
) |
|
) |
|
|
|
if self.lowrank: |
|
U, S, Vt = self._svd_fn_lowrank(X) |
|
else: |
|
U, S, Vt = self._svd_fn_full(X) |
|
U, Vt = self._svd_flip(U, Vt, u_based_decision=False) |
|
explained_variance = S**2 / (n_total_samples - 1) |
|
explained_variance_ratio = S**2 / torch.sum(col_var * n_total_samples) |
|
|
|
self.n_samples_seen_ = n_total_samples |
|
self.components_ = Vt[: self.n_components] |
|
self.singular_values_ = S[: self.n_components] |
|
self.mean_ = col_mean |
|
self.var_ = col_var |
|
self.explained_variance_ = explained_variance[: self.n_components] |
|
self.explained_variance_ratio_ = explained_variance_ratio[: self.n_components] |
|
if self.n_components not in (n_samples, n_features): |
|
self.noise_variance_ = explained_variance[self.n_components :].mean() |
|
else: |
|
self.noise_variance_ = torch.tensor(0.0, device=X.device) |
|
return self |
|
|
|
def transform(self, X) -> torch.Tensor: |
|
""" |
|
Applies dimensionality reduction to `X`. |
|
|
|
The input data `X` is projected on the first principal components previously extracted from a training set. |
|
|
|
Args: |
|
X (torch.Tensor): New data tensor with shape (n_samples, n_features) to be transformed. |
|
|
|
Returns: |
|
torch.Tensor: Transformed data tensor with shape (n_samples, n_components). |
|
""" |
|
X = X - self.mean_ |
|
return torch.mm(X.double(), self.components_.T).to(X.dtype) |
|
|
|
@staticmethod |
|
def gen_batches(n: int, batch_size: int, min_batch_size: int = 0): |
|
"""Generator to create slices containing `batch_size` elements from 0 to `n`. |
|
|
|
The last slice may contain less than `batch_size` elements, when `batch_size` does not divide `n`. |
|
|
|
Args: |
|
n (int): Size of the sequence. |
|
batch_size (int): Number of elements in each batch. |
|
min_batch_size (int, optional): Minimum number of elements in each batch. Defaults to 0. |
|
|
|
Yields: |
|
slice: A slice of `batch_size` elements. |
|
""" |
|
start = 0 |
|
for _ in range(int(n // batch_size)): |
|
end = start + batch_size |
|
if end + min_batch_size > n: |
|
continue |
|
yield slice(start, end) |
|
start = end |
|
if start < n: |
|
yield slice(start, n) |
|
|