apps/__pycache__/mv_models.cpython-38.pyc
CHANGED
|
Binary files a/apps/__pycache__/mv_models.cpython-38.pyc and b/apps/__pycache__/mv_models.cpython-38.pyc differ
|
|
|
apps/mv_models.py
CHANGED
|
@@ -19,36 +19,6 @@ from huggingface_hub import hf_hub_download
|
|
| 19 |
|
| 20 |
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
| 21 |
|
| 22 |
-
|
| 23 |
-
@dataclass
|
| 24 |
-
class TestConfig:
|
| 25 |
-
pretrained_model_name_or_path: str
|
| 26 |
-
pretrained_unet_path: str
|
| 27 |
-
revision: Optional[str]
|
| 28 |
-
validation_dataset: Dict
|
| 29 |
-
save_dir: str
|
| 30 |
-
seed: Optional[int]
|
| 31 |
-
validation_batch_size: int
|
| 32 |
-
dataloader_num_workers: int
|
| 33 |
-
|
| 34 |
-
local_rank: int
|
| 35 |
-
|
| 36 |
-
pipe_kwargs: Dict
|
| 37 |
-
pipe_validation_kwargs: Dict
|
| 38 |
-
unet_from_pretrained_kwargs: Dict
|
| 39 |
-
validation_guidance_scales: List[float]
|
| 40 |
-
validation_grid_nrow: int
|
| 41 |
-
camera_embedding_lr_mult: float
|
| 42 |
-
|
| 43 |
-
num_views: int
|
| 44 |
-
camera_embedding_type: str
|
| 45 |
-
|
| 46 |
-
pred_type: str # joint, or ablation
|
| 47 |
-
|
| 48 |
-
enable_xformers_memory_efficient_attention: bool
|
| 49 |
-
|
| 50 |
-
cond_on_normals: bool
|
| 51 |
-
cond_on_colors: bool
|
| 52 |
|
| 53 |
class GenMVImage(object):
|
| 54 |
def __init__(self, device):
|
|
@@ -59,9 +29,7 @@ class GenMVImage(object):
|
|
| 59 |
self.device = device
|
| 60 |
|
| 61 |
def gen_image_from_crm(self, image):
|
| 62 |
-
|
| 63 |
from .third_party.CRM.pipelines import TwoStagePipeline
|
| 64 |
-
specs = json.load(open(f"{parent_dir}/apps/third_party/CRM/configs/specs_objaverse_total.json"))
|
| 65 |
stage1_config = OmegaConf.load(f"{parent_dir}/apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml").config
|
| 66 |
stage1_sampler_config = stage1_config.sampler
|
| 67 |
stage1_model_config = stage1_config.models
|
|
@@ -127,6 +95,7 @@ class GenMVImage(object):
|
|
| 127 |
return mv_imgs[1], mv_imgs[2], mv_imgs[3], mv_imgs[0]
|
| 128 |
|
| 129 |
def gen_image_from_wonder3d(self, image, crop_size):
|
|
|
|
| 130 |
from diffusers import DiffusionPipeline # only tested on diffusers[torch]==0.19.3, may have conflicts with newer versions of diffusers
|
| 131 |
|
| 132 |
weight_dtype = torch.float16
|
|
@@ -136,9 +105,9 @@ class GenMVImage(object):
|
|
| 136 |
pipeline = self.pipelines['wonder3d']
|
| 137 |
else:
|
| 138 |
self.pipelines['wonder3d'] = DiffusionPipeline.from_pretrained(
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
)
|
| 143 |
self.pipelines['wonder3d'].unet.enable_xformers_memory_efficient_attention()
|
| 144 |
self.pipelines['wonder3d'].to(self.device)
|
|
|
|
| 19 |
|
| 20 |
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
class GenMVImage(object):
|
| 24 |
def __init__(self, device):
|
|
|
|
| 29 |
self.device = device
|
| 30 |
|
| 31 |
def gen_image_from_crm(self, image):
|
|
|
|
| 32 |
from .third_party.CRM.pipelines import TwoStagePipeline
|
|
|
|
| 33 |
stage1_config = OmegaConf.load(f"{parent_dir}/apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml").config
|
| 34 |
stage1_sampler_config = stage1_config.sampler
|
| 35 |
stage1_model_config = stage1_config.models
|
|
|
|
| 95 |
return mv_imgs[1], mv_imgs[2], mv_imgs[3], mv_imgs[0]
|
| 96 |
|
| 97 |
def gen_image_from_wonder3d(self, image, crop_size):
|
| 98 |
+
sys.path.append(f"{parent_dir}/apps/third_party/Wonder3D")
|
| 99 |
from diffusers import DiffusionPipeline # only tested on diffusers[torch]==0.19.3, may have conflicts with newer versions of diffusers
|
| 100 |
|
| 101 |
weight_dtype = torch.float16
|
|
|
|
| 105 |
pipeline = self.pipelines['wonder3d']
|
| 106 |
else:
|
| 107 |
self.pipelines['wonder3d'] = DiffusionPipeline.from_pretrained(
|
| 108 |
+
'flamehaze1115/wonder3d-v1.0', # or use local checkpoint './ckpts'
|
| 109 |
+
custom_pipeline='flamehaze1115/wonder3d-pipeline',
|
| 110 |
+
torch_dtype=torch.float16
|
| 111 |
)
|
| 112 |
self.pipelines['wonder3d'].unet.enable_xformers_memory_efficient_attention()
|
| 113 |
self.pipelines['wonder3d'].to(self.device)
|