SOUM-AI commited on
Commit
df00c6f
·
verified ·
1 Parent(s): adb0a11

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -106
app.py DELETED
@@ -1,106 +0,0 @@
1
- import streamlit as st
2
- from PyPDF2 import PdfReader
3
- from langchain.text_splitter import RecursiveCharacterTextSplitter
4
- import os
5
- from langchain_google_genai import GoogleGenerativeAIEmbeddings
6
- import google.generativeai as genai
7
- from langchain.vectorstores import FAISS
8
- from langchain_google_genai import ChatGoogleGenerativeAI
9
- from langchain.chains.question_answering import load_qa_chain
10
- from langchain.prompts import PromptTemplate
11
- from dotenv import load_dotenv
12
-
13
- load_dotenv()
14
- os.getenv("GOOGLE_API_KEY")
15
- genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
16
-
17
-
18
-
19
-
20
-
21
-
22
- def get_pdf_text(pdf_docs):
23
- text=""
24
- for pdf in pdf_docs:
25
- pdf_reader= PdfReader(pdf)
26
- for page in pdf_reader.pages:
27
- text+= page.extract_text()
28
- return text
29
-
30
-
31
-
32
- def get_text_chunks(text):
33
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
34
- chunks = text_splitter.split_text(text)
35
- return chunks
36
-
37
-
38
- def get_vector_store(text_chunks):
39
- embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
40
- vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
41
- vector_store.save_local("faiss_index")
42
-
43
-
44
- def get_conversational_chain():
45
-
46
- prompt_template = """
47
- Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
48
- provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
49
- Context:\n {context}?\n
50
- Question: \n{question}\n
51
-
52
- Answer:
53
- """
54
-
55
- model = ChatGoogleGenerativeAI(model="gemini-pro",
56
- temperature=0.9)
57
-
58
- prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
59
- chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
60
-
61
- return chain
62
-
63
-
64
-
65
- def user_input(user_question):
66
- embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
67
-
68
- new_db = FAISS.load_local("faiss_index", embeddings)
69
- docs = new_db.similarity_search(user_question)
70
-
71
- chain = get_conversational_chain()
72
-
73
-
74
- response = chain(
75
- {"input_documents":docs, "question": user_question}
76
- , return_only_outputs=True)
77
-
78
- print(response)
79
- st.write("Answer: ", response["output_text"])
80
-
81
-
82
-
83
-
84
- def main():
85
- st.set_page_config("Chat PDF")
86
- st.header("Chat with PDF using Gemini💁")
87
-
88
- user_question = st.text_input("Ask a Question from the PDF Files")
89
-
90
- if user_question:
91
- user_input(user_question)
92
-
93
- with st.sidebar:
94
- st.title("Menu:")
95
- pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
96
- if st.button("Submit & Process"):
97
- with st.spinner("Processing..."):
98
- raw_text = get_pdf_text(pdf_docs)
99
- text_chunks = get_text_chunks(raw_text)
100
- get_vector_store(text_chunks)
101
- st.success("Done")
102
-
103
-
104
-
105
- if __name__ == "__main__":
106
- main()