Sa-m commited on
Commit
69dc109
·
1 Parent(s): 1309305

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +75 -0
app.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ # DOGS VS CATS DATASET PREDICTION
4
+
5
+ ## LOADING MODULES
6
+
7
+
8
+ # Commented out IPython magic to ensure Python compatibility.
9
+ # %%capture
10
+ # !pip install tensorflow-addons
11
+ # !pip install gradio
12
+
13
+
14
+ import tensorflow_addons as tfa
15
+ import gradio as gr
16
+ import cv2
17
+ import tensorflow as tf
18
+ import numpy as np
19
+ from tensorflow.keras.models import load_model
20
+ from google_drive_downloader import GoogleDriveDownloader as gdd
21
+ # from tensorflow.keras import *
22
+ # import tensorflow_datasets as tfds
23
+ # import matplotlib.pyplot as plt
24
+ # import time
25
+
26
+
27
+ def getData(flid,path,unzp=False):
28
+ return gdd.download_file_from_google_drive(file_id=flid,
29
+ dest_path=path,
30
+ unzip=unzp)
31
+
32
+
33
+ """##LOADING SAVED MODEL"""
34
+
35
+ model1='1TNF6uZBvcIfEUwzIR8t4L1kuImxb6PES'
36
+ model2='1cK1cIYdczAoEPkiNZUqx2r1UqF2idcay'
37
+ model3='1ldVcjryLk-YFfLRyNYdut5WeLLNxJ8ab'
38
+ model = model1 #@param ["model1", "model2","model3"] {type:"raw"}
39
+ PATH='/saved_model/best_model.h5'
40
+ getData(flid=model,path=PATH)
41
+
42
+ # For example images
43
+ # gdd.download_file_from_google_drive(file_id='1LdB6ZE9vxPi4HNN2emqJSoP0ig9DiG10',
44
+ # dest_path='/content/examples.zip',
45
+ # unzip=True)
46
+
47
+
48
+ model=load_model('./saved_model/best_model.h5')
49
+ # model=load_model("/content/saved_model/content/saved/saved_model")
50
+
51
+ labels=['Cat','Dog']
52
+ NUM_CLASSES=2
53
+ IMG_SIZE=224
54
+ # ex=[['/content/dogs-cat-examples/cat2.jpg'],
55
+ # ['/content/dogs-cat-examples/cat3.jpg'],
56
+ # ['/content/dogs-cat-examples/dog2.jpeg'],
57
+ # ['/content/dogs-cat-examples/dog.jpeg']]
58
+
59
+ """
60
+ ## RUNNING WEB UI"""
61
+
62
+ def classify_image(inp):
63
+ inp = inp.reshape((-1, IMG_SIZE, IMG_SIZE, 3))
64
+ inp = tf.keras.applications.vgg16.preprocess_input(inp)
65
+ prediction = model.predict(inp).flatten()
66
+ return {labels[i]: float(prediction[i]) for i in range(NUM_CLASSES)}
67
+
68
+ image = gr.inputs.Image(shape=(IMG_SIZE, IMG_SIZE))
69
+ label = gr.outputs.Label(num_top_classes=2)
70
+
71
+ gr.Interface(fn=classify_image, inputs=image, outputs=label, title='Cats Vs Dogs',height=600, width=1200).launch()
72
+
73
+
74
+
75
+