Spaces:
Sleeping
Sleeping
File size: 1,046 Bytes
c0f15ab e62cc45 c0f15ab b1ba841 c0f15ab 7d71559 c0f15ab 7d71559 c0f15ab e62cc45 c0f15ab e62cc45 c0f15ab e62cc45 72a21b5 c0f15ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
# examples = [["Examples/img1.png"], ["Examples/img2.png"],["Examples/img3.png"], ["Examples/img4.png"]]
import gradio as gr
import tensorflow as tf
import numpy as np
from tensorflow.keras.models import load_model
HEIGHT, WIDTH = 224, 224
IMG_SIZE = 224
model = load_model('Models/best_model1.h5')
def classify_image(inp):
NUM_CLASSES = 2
labels = ['Cat', 'Dog']
inp = tf.image.resize(inp, [IMG_SIZE, IMG_SIZE])
inp = inp.numpy().reshape((-1, IMG_SIZE, IMG_SIZE, 3))
inp = tf.keras.applications.vgg16.preprocess_input(inp)
prediction = model.predict(inp).flatten()
return {labels[i]: float(prediction[i]) for i in range(NUM_CLASSES)} # Fixed: return floats
image = gr.Image(height=HEIGHT, width=WIDTH, label='Input')
label = gr.Label(num_top_classes=2)
examples = [["Examples/img1.png"], ["Examples/img2.png"],["Examples/img3.png"], ["Examples/img4.png"]]
gr.Interface(
fn=classify_image,
inputs=image,
outputs=label,
title='Smart Pet Classifier',
examples=examples
).launch(debug=False) |