Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,38 @@
|
|
1 |
# examples = [["Examples/img1.png"], ["Examples/img2.png"],["Examples/img3.png"], ["Examples/img4.png"]]
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import gradio as gr
|
4 |
import tensorflow as tf
|
5 |
import numpy as np
|
@@ -10,19 +43,22 @@ IMG_SIZE = 224
|
|
10 |
model = load_model('Models/best_model1.h5')
|
11 |
|
12 |
def classify_image(inp):
|
13 |
-
NUM_CLASSES = 2
|
14 |
labels = ['Cat', 'Dog']
|
15 |
inp = tf.image.resize(inp, [IMG_SIZE, IMG_SIZE])
|
16 |
inp = inp.numpy().reshape((-1, IMG_SIZE, IMG_SIZE, 3))
|
17 |
inp = tf.keras.applications.vgg16.preprocess_input(inp)
|
18 |
prediction = model.predict(inp).flatten()
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
|
21 |
image = gr.Image(height=HEIGHT, width=WIDTH, label='Input')
|
22 |
label = gr.Label(num_top_classes=2)
|
23 |
-
|
24 |
examples = [["Examples/img1.png"], ["Examples/img2.png"],["Examples/img3.png"], ["Examples/img4.png"]]
|
25 |
|
|
|
26 |
gr.Interface(
|
27 |
fn=classify_image,
|
28 |
inputs=image,
|
|
|
1 |
# examples = [["Examples/img1.png"], ["Examples/img2.png"],["Examples/img3.png"], ["Examples/img4.png"]]
|
2 |
|
3 |
+
# import gradio as gr
|
4 |
+
# import tensorflow as tf
|
5 |
+
# import numpy as np
|
6 |
+
# from tensorflow.keras.models import load_model
|
7 |
+
|
8 |
+
# HEIGHT, WIDTH = 224, 224
|
9 |
+
# IMG_SIZE = 224
|
10 |
+
# model = load_model('Models/best_model1.h5')
|
11 |
+
|
12 |
+
# def classify_image(inp):
|
13 |
+
# NUM_CLASSES = 2
|
14 |
+
# labels = ['Cat', 'Dog']
|
15 |
+
# inp = tf.image.resize(inp, [IMG_SIZE, IMG_SIZE])
|
16 |
+
# inp = inp.numpy().reshape((-1, IMG_SIZE, IMG_SIZE, 3))
|
17 |
+
# inp = tf.keras.applications.vgg16.preprocess_input(inp)
|
18 |
+
# prediction = model.predict(inp).flatten()
|
19 |
+
# return {labels[i]: float(prediction[i]) for i in range(NUM_CLASSES)} # Fixed: return floats
|
20 |
+
|
21 |
+
# image = gr.Image(height=HEIGHT, width=WIDTH, label='Input')
|
22 |
+
# label = gr.Label(num_top_classes=2)
|
23 |
+
|
24 |
+
# examples = [["Examples/img1.png"], ["Examples/img2.png"],["Examples/img3.png"], ["Examples/img4.png"]]
|
25 |
+
|
26 |
+
# gr.Interface(
|
27 |
+
# fn=classify_image,
|
28 |
+
# inputs=image,
|
29 |
+
# outputs=label,
|
30 |
+
# title='Smart Pet Classifier',
|
31 |
+
# examples=examples
|
32 |
+
# ).launch(debug=False)
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
import gradio as gr
|
37 |
import tensorflow as tf
|
38 |
import numpy as np
|
|
|
43 |
model = load_model('Models/best_model1.h5')
|
44 |
|
45 |
def classify_image(inp):
|
|
|
46 |
labels = ['Cat', 'Dog']
|
47 |
inp = tf.image.resize(inp, [IMG_SIZE, IMG_SIZE])
|
48 |
inp = inp.numpy().reshape((-1, IMG_SIZE, IMG_SIZE, 3))
|
49 |
inp = tf.keras.applications.vgg16.preprocess_input(inp)
|
50 |
prediction = model.predict(inp).flatten()
|
51 |
+
if len(prediction) == 1:
|
52 |
+
dog_prob = float(prediction[0])
|
53 |
+
return {labels[0]: 1 - dog_prob, labels[1]: dog_prob}
|
54 |
+
else:
|
55 |
+
return {labels[i]: float(prediction[i]) for i in range(len(labels))}
|
56 |
|
57 |
image = gr.Image(height=HEIGHT, width=WIDTH, label='Input')
|
58 |
label = gr.Label(num_top_classes=2)
|
|
|
59 |
examples = [["Examples/img1.png"], ["Examples/img2.png"],["Examples/img3.png"], ["Examples/img4.png"]]
|
60 |
|
61 |
+
|
62 |
gr.Interface(
|
63 |
fn=classify_image,
|
64 |
inputs=image,
|