Sa-m commited on
Commit
51ec7f5
·
verified ·
1 Parent(s): c0f15ab

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -3
app.py CHANGED
@@ -1,5 +1,38 @@
1
  # examples = [["Examples/img1.png"], ["Examples/img2.png"],["Examples/img3.png"], ["Examples/img4.png"]]
2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  import gradio as gr
4
  import tensorflow as tf
5
  import numpy as np
@@ -10,19 +43,22 @@ IMG_SIZE = 224
10
  model = load_model('Models/best_model1.h5')
11
 
12
  def classify_image(inp):
13
- NUM_CLASSES = 2
14
  labels = ['Cat', 'Dog']
15
  inp = tf.image.resize(inp, [IMG_SIZE, IMG_SIZE])
16
  inp = inp.numpy().reshape((-1, IMG_SIZE, IMG_SIZE, 3))
17
  inp = tf.keras.applications.vgg16.preprocess_input(inp)
18
  prediction = model.predict(inp).flatten()
19
- return {labels[i]: float(prediction[i]) for i in range(NUM_CLASSES)} # Fixed: return floats
 
 
 
 
20
 
21
  image = gr.Image(height=HEIGHT, width=WIDTH, label='Input')
22
  label = gr.Label(num_top_classes=2)
23
-
24
  examples = [["Examples/img1.png"], ["Examples/img2.png"],["Examples/img3.png"], ["Examples/img4.png"]]
25
 
 
26
  gr.Interface(
27
  fn=classify_image,
28
  inputs=image,
 
1
  # examples = [["Examples/img1.png"], ["Examples/img2.png"],["Examples/img3.png"], ["Examples/img4.png"]]
2
 
3
+ # import gradio as gr
4
+ # import tensorflow as tf
5
+ # import numpy as np
6
+ # from tensorflow.keras.models import load_model
7
+
8
+ # HEIGHT, WIDTH = 224, 224
9
+ # IMG_SIZE = 224
10
+ # model = load_model('Models/best_model1.h5')
11
+
12
+ # def classify_image(inp):
13
+ # NUM_CLASSES = 2
14
+ # labels = ['Cat', 'Dog']
15
+ # inp = tf.image.resize(inp, [IMG_SIZE, IMG_SIZE])
16
+ # inp = inp.numpy().reshape((-1, IMG_SIZE, IMG_SIZE, 3))
17
+ # inp = tf.keras.applications.vgg16.preprocess_input(inp)
18
+ # prediction = model.predict(inp).flatten()
19
+ # return {labels[i]: float(prediction[i]) for i in range(NUM_CLASSES)} # Fixed: return floats
20
+
21
+ # image = gr.Image(height=HEIGHT, width=WIDTH, label='Input')
22
+ # label = gr.Label(num_top_classes=2)
23
+
24
+ # examples = [["Examples/img1.png"], ["Examples/img2.png"],["Examples/img3.png"], ["Examples/img4.png"]]
25
+
26
+ # gr.Interface(
27
+ # fn=classify_image,
28
+ # inputs=image,
29
+ # outputs=label,
30
+ # title='Smart Pet Classifier',
31
+ # examples=examples
32
+ # ).launch(debug=False)
33
+
34
+
35
+
36
  import gradio as gr
37
  import tensorflow as tf
38
  import numpy as np
 
43
  model = load_model('Models/best_model1.h5')
44
 
45
  def classify_image(inp):
 
46
  labels = ['Cat', 'Dog']
47
  inp = tf.image.resize(inp, [IMG_SIZE, IMG_SIZE])
48
  inp = inp.numpy().reshape((-1, IMG_SIZE, IMG_SIZE, 3))
49
  inp = tf.keras.applications.vgg16.preprocess_input(inp)
50
  prediction = model.predict(inp).flatten()
51
+ if len(prediction) == 1:
52
+ dog_prob = float(prediction[0])
53
+ return {labels[0]: 1 - dog_prob, labels[1]: dog_prob}
54
+ else:
55
+ return {labels[i]: float(prediction[i]) for i in range(len(labels))}
56
 
57
  image = gr.Image(height=HEIGHT, width=WIDTH, label='Input')
58
  label = gr.Label(num_top_classes=2)
 
59
  examples = [["Examples/img1.png"], ["Examples/img2.png"],["Examples/img3.png"], ["Examples/img4.png"]]
60
 
61
+
62
  gr.Interface(
63
  fn=classify_image,
64
  inputs=image,