| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import argparse | 
					
					
						
						| 
							 | 
						import gradio as gr | 
					
					
						
						| 
							 | 
						from PIL import Image | 
					
					
						
						| 
							 | 
						from numpy import random | 
					
					
						
						| 
							 | 
						from pathlib import Path | 
					
					
						
						| 
							 | 
						import os | 
					
					
						
						| 
							 | 
						import time | 
					
					
						
						| 
							 | 
						import torch.backends.cudnn as cudnn | 
					
					
						
						| 
							 | 
						from models.experimental import attempt_load | 
					
					
						
						| 
							 | 
						import cv2 | 
					
					
						
						| 
							 | 
						from utils.datasets import LoadStreams, LoadImages | 
					
					
						
						| 
							 | 
						from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier,scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path | 
					
					
						
						| 
							 | 
						from utils.plots import plot_one_box | 
					
					
						
						| 
							 | 
						from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						os.system('git clone https://github.com/WongKinYiu/yolov7') | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						  | 
					
					
						
						| 
							 | 
						def Custom_detect(img): | 
					
					
						
						| 
							 | 
						    model='best'  | 
					
					
						
						| 
							 | 
						    parser = argparse.ArgumentParser() | 
					
					
						
						| 
							 | 
						    parser.add_argument('--weights', nargs='+', type=str, default=model+".pt", help='model.pt path(s)') | 
					
					
						
						| 
							 | 
						    parser.add_argument('--source', type=str, default='Temp_file/', help='source')  | 
					
					
						
						| 
							 | 
						    parser.add_argument('--img-size', type=int, default=256, help='inference size (pixels)') | 
					
					
						
						| 
							 | 
						    parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold') | 
					
					
						
						| 
							 | 
						    parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS') | 
					
					
						
						| 
							 | 
						    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | 
					
					
						
						| 
							 | 
						    parser.add_argument('--view-img', action='store_true', help='display results') | 
					
					
						
						| 
							 | 
						    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') | 
					
					
						
						| 
							 | 
						    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') | 
					
					
						
						| 
							 | 
						    parser.add_argument('--nosave', action='store_true', help='do not save images/videos') | 
					
					
						
						| 
							 | 
						    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') | 
					
					
						
						| 
							 | 
						    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') | 
					
					
						
						| 
							 | 
						    parser.add_argument('--augment', action='store_true', help='augmented inference') | 
					
					
						
						| 
							 | 
						    parser.add_argument('--update', action='store_true', help='update all models') | 
					
					
						
						| 
							 | 
						    parser.add_argument('--project', default='runs/detect', help='save results to project/name') | 
					
					
						
						| 
							 | 
						    parser.add_argument('--name', default='exp', help='save results to project/name') | 
					
					
						
						| 
							 | 
						    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') | 
					
					
						
						| 
							 | 
						    parser.add_argument('--trace', action='store_true', help='trace model') | 
					
					
						
						| 
							 | 
						    opt = parser.parse_args() | 
					
					
						
						| 
							 | 
						    img.save("Temp_file/test.jpg") | 
					
					
						
						| 
							 | 
						    source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.trace | 
					
					
						
						| 
							 | 
						    save_img = True  | 
					
					
						
						| 
							 | 
						    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')) | 
					
					
						
						| 
							 | 
						    save_dir = Path(increment_path(Path(opt.project)/opt.name,exist_ok=opt.exist_ok)) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)   | 
					
					
						
						| 
							 | 
						    set_logging() | 
					
					
						
						| 
							 | 
						    device = select_device(opt.device) | 
					
					
						
						| 
							 | 
						    half = device.type != 'cpu'  | 
					
					
						
						| 
							 | 
						    model = attempt_load(weights, map_location=device)  | 
					
					
						
						| 
							 | 
						    stride = int(model.stride.max())   | 
					
					
						
						| 
							 | 
						    imgsz = check_img_size(imgsz, s=stride) | 
					
					
						
						| 
							 | 
						    if trace: | 
					
					
						
						| 
							 | 
						        model = TracedModel(model, device, opt.img_size) | 
					
					
						
						| 
							 | 
						    if half: | 
					
					
						
						| 
							 | 
						        model.half()  | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						    classify = False | 
					
					
						
						| 
							 | 
						    if classify: | 
					
					
						
						| 
							 | 
						        modelc = load_classifier(name='resnet101', n=2)   | 
					
					
						
						| 
							 | 
						        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval() | 
					
					
						
						| 
							 | 
						    vid_path, vid_writer = None, None | 
					
					
						
						| 
							 | 
						    if webcam: | 
					
					
						
						| 
							 | 
						        view_img = check_imshow() | 
					
					
						
						| 
							 | 
						        cudnn.benchmark = True  | 
					
					
						
						| 
							 | 
						        dataset = LoadStreams(source, img_size=imgsz, stride=stride) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        dataset = LoadImages(source, img_size=imgsz, stride=stride) | 
					
					
						
						| 
							 | 
						    names = model.module.names if hasattr(model, 'module') else model.names | 
					
					
						
						| 
							 | 
						    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names] | 
					
					
						
						| 
							 | 
						    if device.type != 'cpu': | 
					
					
						
						| 
							 | 
						        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  | 
					
					
						
						| 
							 | 
						    t0 = time.time() | 
					
					
						
						| 
							 | 
						    for path, img, im0s, vid_cap in dataset: | 
					
					
						
						| 
							 | 
						        img = torch.from_numpy(img).to(device) | 
					
					
						
						| 
							 | 
						        img = img.half() if half else img.float()  | 
					
					
						
						| 
							 | 
						        img /= 255.0   | 
					
					
						
						| 
							 | 
						        if img.ndimension() == 3: | 
					
					
						
						| 
							 | 
						            img = img.unsqueeze(0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        t1 = time_synchronized() | 
					
					
						
						| 
							 | 
						        pred = model(img, augment=opt.augment)[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        pred = non_max_suppression(pred,opt.conf_thres,opt.iou_thres,classes=opt.classes, agnostic=opt.agnostic_nms)  | 
					
					
						
						| 
							 | 
						        t2 = time_synchronized() | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if classify: | 
					
					
						
						| 
							 | 
						            pred = apply_classifier(pred, modelc, img, im0s) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						        for i, det in enumerate(pred):  | 
					
					
						
						| 
							 | 
						            if webcam:  | 
					
					
						
						| 
							 | 
						                p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            p = Path(p)   | 
					
					
						
						| 
							 | 
						            save_path = str(save_dir / p.name) | 
					
					
						
						| 
							 | 
						            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')   | 
					
					
						
						| 
							 | 
						            s += '%gx%g ' % img.shape[2:]   | 
					
					
						
						| 
							 | 
						            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]   | 
					
					
						
						| 
							 | 
						            if len(det): | 
					
					
						
						| 
							 | 
						                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                for c in det[:, -1].unique(): | 
					
					
						
						| 
							 | 
						                    n = (det[:, -1] == c).sum()   | 
					
					
						
						| 
							 | 
						                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                for *xyxy, conf, cls in reversed(det): | 
					
					
						
						| 
							 | 
						                    if save_txt:   | 
					
					
						
						| 
							 | 
						                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  | 
					
					
						
						| 
							 | 
						                        line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  | 
					
					
						
						| 
							 | 
						                        with open(txt_path + '.txt', 'a') as f: | 
					
					
						
						| 
							 | 
						                            f.write(('%g ' * len(line)).rstrip() % line + '\n') | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                    if save_img or view_img: | 
					
					
						
						| 
							 | 
						                        label = f'{names[int(cls)]} {conf:.2f}' | 
					
					
						
						| 
							 | 
						                        plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3) | 
					
					
						
						| 
							 | 
						            if view_img: | 
					
					
						
						| 
							 | 
						                cv2.imshow(str(p), im0) | 
					
					
						
						| 
							 | 
						                cv2.waitKey(1)   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if save_img: | 
					
					
						
						| 
							 | 
						                if dataset.mode == 'image': | 
					
					
						
						| 
							 | 
						                    cv2.imwrite(save_path, im0) | 
					
					
						
						| 
							 | 
						                else:  | 
					
					
						
						| 
							 | 
						                    if vid_path != save_path:  | 
					
					
						
						| 
							 | 
						                        vid_path = save_path | 
					
					
						
						| 
							 | 
						                        if isinstance(vid_writer, cv2.VideoWriter): | 
					
					
						
						| 
							 | 
						                            vid_writer.release() | 
					
					
						
						| 
							 | 
						                        if vid_cap:  | 
					
					
						
						| 
							 | 
						                            fps = vid_cap.get(cv2.CAP_PROP_FPS) | 
					
					
						
						| 
							 | 
						                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | 
					
					
						
						| 
							 | 
						                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | 
					
					
						
						| 
							 | 
						                        else:  | 
					
					
						
						| 
							 | 
						                            fps, w, h = 30, im0.shape[1], im0.shape[0] | 
					
					
						
						| 
							 | 
						                            save_path += '.mp4' | 
					
					
						
						| 
							 | 
						                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) | 
					
					
						
						| 
							 | 
						                    vid_writer.write(im0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if save_txt or save_img: | 
					
					
						
						| 
							 | 
						        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    print(f'Done. ({time.time() - t0:.3f}s)') | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return Image.fromarray(im0[:,:,::-1]) | 
					
					
						
						| 
							 | 
						inp = gr.Image(type="pil") | 
					
					
						
						| 
							 | 
						output = gr.Image(type="numpy").style(full_width=True, height=10) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						examples=[["Examples/Image1.jpg","Image1"],["Examples/Image2.jpg","Image2"],["Examples/Image29.jpg","Image3"]] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						io=gr.Interface(fn=Custom_detect, inputs=inp, outputs=output, title='Pot Hole Detection With Custom YOLOv7',examples=examples,cache_examples=False) | 
					
					
						
						| 
							 | 
						io.launch() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 |