Upload torch_utils.py
Browse files- utils/torch_utils.py +374 -0
utils/torch_utils.py
ADDED
|
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# YOLOR PyTorch utils
|
| 2 |
+
|
| 3 |
+
import datetime
|
| 4 |
+
import logging
|
| 5 |
+
import math
|
| 6 |
+
import os
|
| 7 |
+
import platform
|
| 8 |
+
import subprocess
|
| 9 |
+
import time
|
| 10 |
+
from contextlib import contextmanager
|
| 11 |
+
from copy import deepcopy
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
import torch.backends.cudnn as cudnn
|
| 16 |
+
import torch.nn as nn
|
| 17 |
+
import torch.nn.functional as F
|
| 18 |
+
import torchvision
|
| 19 |
+
|
| 20 |
+
try:
|
| 21 |
+
import thop # for FLOPS computation
|
| 22 |
+
except ImportError:
|
| 23 |
+
thop = None
|
| 24 |
+
logger = logging.getLogger(__name__)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
@contextmanager
|
| 28 |
+
def torch_distributed_zero_first(local_rank: int):
|
| 29 |
+
"""
|
| 30 |
+
Decorator to make all processes in distributed training wait for each local_master to do something.
|
| 31 |
+
"""
|
| 32 |
+
if local_rank not in [-1, 0]:
|
| 33 |
+
torch.distributed.barrier()
|
| 34 |
+
yield
|
| 35 |
+
if local_rank == 0:
|
| 36 |
+
torch.distributed.barrier()
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def init_torch_seeds(seed=0):
|
| 40 |
+
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
|
| 41 |
+
torch.manual_seed(seed)
|
| 42 |
+
if seed == 0: # slower, more reproducible
|
| 43 |
+
cudnn.benchmark, cudnn.deterministic = False, True
|
| 44 |
+
else: # faster, less reproducible
|
| 45 |
+
cudnn.benchmark, cudnn.deterministic = True, False
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def date_modified(path=__file__):
|
| 49 |
+
# return human-readable file modification date, i.e. '2021-3-26'
|
| 50 |
+
t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
|
| 51 |
+
return f'{t.year}-{t.month}-{t.day}'
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def git_describe(path=Path(__file__).parent): # path must be a directory
|
| 55 |
+
# return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
|
| 56 |
+
s = f'git -C {path} describe --tags --long --always'
|
| 57 |
+
try:
|
| 58 |
+
return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
|
| 59 |
+
except subprocess.CalledProcessError as e:
|
| 60 |
+
return '' # not a git repository
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def select_device(device='', batch_size=None):
|
| 64 |
+
# device = 'cpu' or '0' or '0,1,2,3'
|
| 65 |
+
s = f'YOLOR 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string
|
| 66 |
+
cpu = device.lower() == 'cpu'
|
| 67 |
+
if cpu:
|
| 68 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
|
| 69 |
+
elif device: # non-cpu device requested
|
| 70 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
|
| 71 |
+
assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
|
| 72 |
+
|
| 73 |
+
cuda = not cpu and torch.cuda.is_available()
|
| 74 |
+
if cuda:
|
| 75 |
+
n = torch.cuda.device_count()
|
| 76 |
+
if n > 1 and batch_size: # check that batch_size is compatible with device_count
|
| 77 |
+
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
|
| 78 |
+
space = ' ' * len(s)
|
| 79 |
+
for i, d in enumerate(device.split(',') if device else range(n)):
|
| 80 |
+
p = torch.cuda.get_device_properties(i)
|
| 81 |
+
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
|
| 82 |
+
else:
|
| 83 |
+
s += 'CPU\n'
|
| 84 |
+
|
| 85 |
+
logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
|
| 86 |
+
return torch.device('cuda:0' if cuda else 'cpu')
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def time_synchronized():
|
| 90 |
+
# pytorch-accurate time
|
| 91 |
+
if torch.cuda.is_available():
|
| 92 |
+
torch.cuda.synchronize()
|
| 93 |
+
return time.time()
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def profile(x, ops, n=100, device=None):
|
| 97 |
+
# profile a pytorch module or list of modules. Example usage:
|
| 98 |
+
# x = torch.randn(16, 3, 640, 640) # input
|
| 99 |
+
# m1 = lambda x: x * torch.sigmoid(x)
|
| 100 |
+
# m2 = nn.SiLU()
|
| 101 |
+
# profile(x, [m1, m2], n=100) # profile speed over 100 iterations
|
| 102 |
+
|
| 103 |
+
device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
| 104 |
+
x = x.to(device)
|
| 105 |
+
x.requires_grad = True
|
| 106 |
+
print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
|
| 107 |
+
print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
|
| 108 |
+
for m in ops if isinstance(ops, list) else [ops]:
|
| 109 |
+
m = m.to(device) if hasattr(m, 'to') else m # device
|
| 110 |
+
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type
|
| 111 |
+
dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
|
| 112 |
+
try:
|
| 113 |
+
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
|
| 114 |
+
except:
|
| 115 |
+
flops = 0
|
| 116 |
+
|
| 117 |
+
for _ in range(n):
|
| 118 |
+
t[0] = time_synchronized()
|
| 119 |
+
y = m(x)
|
| 120 |
+
t[1] = time_synchronized()
|
| 121 |
+
try:
|
| 122 |
+
_ = y.sum().backward()
|
| 123 |
+
t[2] = time_synchronized()
|
| 124 |
+
except: # no backward method
|
| 125 |
+
t[2] = float('nan')
|
| 126 |
+
dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
|
| 127 |
+
dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
|
| 128 |
+
|
| 129 |
+
s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
|
| 130 |
+
s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
|
| 131 |
+
p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
|
| 132 |
+
print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def is_parallel(model):
|
| 136 |
+
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def intersect_dicts(da, db, exclude=()):
|
| 140 |
+
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
| 141 |
+
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def initialize_weights(model):
|
| 145 |
+
for m in model.modules():
|
| 146 |
+
t = type(m)
|
| 147 |
+
if t is nn.Conv2d:
|
| 148 |
+
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
| 149 |
+
elif t is nn.BatchNorm2d:
|
| 150 |
+
m.eps = 1e-3
|
| 151 |
+
m.momentum = 0.03
|
| 152 |
+
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
|
| 153 |
+
m.inplace = True
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def find_modules(model, mclass=nn.Conv2d):
|
| 157 |
+
# Finds layer indices matching module class 'mclass'
|
| 158 |
+
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def sparsity(model):
|
| 162 |
+
# Return global model sparsity
|
| 163 |
+
a, b = 0., 0.
|
| 164 |
+
for p in model.parameters():
|
| 165 |
+
a += p.numel()
|
| 166 |
+
b += (p == 0).sum()
|
| 167 |
+
return b / a
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def prune(model, amount=0.3):
|
| 171 |
+
# Prune model to requested global sparsity
|
| 172 |
+
import torch.nn.utils.prune as prune
|
| 173 |
+
print('Pruning model... ', end='')
|
| 174 |
+
for name, m in model.named_modules():
|
| 175 |
+
if isinstance(m, nn.Conv2d):
|
| 176 |
+
prune.l1_unstructured(m, name='weight', amount=amount) # prune
|
| 177 |
+
prune.remove(m, 'weight') # make permanent
|
| 178 |
+
print(' %.3g global sparsity' % sparsity(model))
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def fuse_conv_and_bn(conv, bn):
|
| 182 |
+
# Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
|
| 183 |
+
fusedconv = nn.Conv2d(conv.in_channels,
|
| 184 |
+
conv.out_channels,
|
| 185 |
+
kernel_size=conv.kernel_size,
|
| 186 |
+
stride=conv.stride,
|
| 187 |
+
padding=conv.padding,
|
| 188 |
+
groups=conv.groups,
|
| 189 |
+
bias=True).requires_grad_(False).to(conv.weight.device)
|
| 190 |
+
|
| 191 |
+
# prepare filters
|
| 192 |
+
w_conv = conv.weight.clone().view(conv.out_channels, -1)
|
| 193 |
+
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
|
| 194 |
+
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
|
| 195 |
+
|
| 196 |
+
# prepare spatial bias
|
| 197 |
+
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
|
| 198 |
+
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
| 199 |
+
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
|
| 200 |
+
|
| 201 |
+
return fusedconv
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def model_info(model, verbose=False, img_size=640):
|
| 205 |
+
# Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
|
| 206 |
+
n_p = sum(x.numel() for x in model.parameters()) # number parameters
|
| 207 |
+
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
|
| 208 |
+
if verbose:
|
| 209 |
+
print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
|
| 210 |
+
for i, (name, p) in enumerate(model.named_parameters()):
|
| 211 |
+
name = name.replace('module_list.', '')
|
| 212 |
+
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
|
| 213 |
+
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
|
| 214 |
+
|
| 215 |
+
try: # FLOPS
|
| 216 |
+
from thop import profile
|
| 217 |
+
stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
|
| 218 |
+
img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
|
| 219 |
+
flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS
|
| 220 |
+
img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
|
| 221 |
+
fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS
|
| 222 |
+
except (ImportError, Exception):
|
| 223 |
+
fs = ''
|
| 224 |
+
|
| 225 |
+
logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
def load_classifier(name='resnet101', n=2):
|
| 229 |
+
# Loads a pretrained model reshaped to n-class output
|
| 230 |
+
model = torchvision.models.__dict__[name](pretrained=True)
|
| 231 |
+
|
| 232 |
+
# ResNet model properties
|
| 233 |
+
# input_size = [3, 224, 224]
|
| 234 |
+
# input_space = 'RGB'
|
| 235 |
+
# input_range = [0, 1]
|
| 236 |
+
# mean = [0.485, 0.456, 0.406]
|
| 237 |
+
# std = [0.229, 0.224, 0.225]
|
| 238 |
+
|
| 239 |
+
# Reshape output to n classes
|
| 240 |
+
filters = model.fc.weight.shape[1]
|
| 241 |
+
model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
|
| 242 |
+
model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
|
| 243 |
+
model.fc.out_features = n
|
| 244 |
+
return model
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
|
| 248 |
+
# scales img(bs,3,y,x) by ratio constrained to gs-multiple
|
| 249 |
+
if ratio == 1.0:
|
| 250 |
+
return img
|
| 251 |
+
else:
|
| 252 |
+
h, w = img.shape[2:]
|
| 253 |
+
s = (int(h * ratio), int(w * ratio)) # new size
|
| 254 |
+
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
|
| 255 |
+
if not same_shape: # pad/crop img
|
| 256 |
+
h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
|
| 257 |
+
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def copy_attr(a, b, include=(), exclude=()):
|
| 261 |
+
# Copy attributes from b to a, options to only include [...] and to exclude [...]
|
| 262 |
+
for k, v in b.__dict__.items():
|
| 263 |
+
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
|
| 264 |
+
continue
|
| 265 |
+
else:
|
| 266 |
+
setattr(a, k, v)
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
class ModelEMA:
|
| 270 |
+
""" Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
|
| 271 |
+
Keep a moving average of everything in the model state_dict (parameters and buffers).
|
| 272 |
+
This is intended to allow functionality like
|
| 273 |
+
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
|
| 274 |
+
A smoothed version of the weights is necessary for some training schemes to perform well.
|
| 275 |
+
This class is sensitive where it is initialized in the sequence of model init,
|
| 276 |
+
GPU assignment and distributed training wrappers.
|
| 277 |
+
"""
|
| 278 |
+
|
| 279 |
+
def __init__(self, model, decay=0.9999, updates=0):
|
| 280 |
+
# Create EMA
|
| 281 |
+
self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
|
| 282 |
+
# if next(model.parameters()).device.type != 'cpu':
|
| 283 |
+
# self.ema.half() # FP16 EMA
|
| 284 |
+
self.updates = updates # number of EMA updates
|
| 285 |
+
self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
|
| 286 |
+
for p in self.ema.parameters():
|
| 287 |
+
p.requires_grad_(False)
|
| 288 |
+
|
| 289 |
+
def update(self, model):
|
| 290 |
+
# Update EMA parameters
|
| 291 |
+
with torch.no_grad():
|
| 292 |
+
self.updates += 1
|
| 293 |
+
d = self.decay(self.updates)
|
| 294 |
+
|
| 295 |
+
msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
|
| 296 |
+
for k, v in self.ema.state_dict().items():
|
| 297 |
+
if v.dtype.is_floating_point:
|
| 298 |
+
v *= d
|
| 299 |
+
v += (1. - d) * msd[k].detach()
|
| 300 |
+
|
| 301 |
+
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
|
| 302 |
+
# Update EMA attributes
|
| 303 |
+
copy_attr(self.ema, model, include, exclude)
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
class BatchNormXd(torch.nn.modules.batchnorm._BatchNorm):
|
| 307 |
+
def _check_input_dim(self, input):
|
| 308 |
+
# The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc
|
| 309 |
+
# is this method that is overwritten by the sub-class
|
| 310 |
+
# This original goal of this method was for tensor sanity checks
|
| 311 |
+
# If you're ok bypassing those sanity checks (eg. if you trust your inference
|
| 312 |
+
# to provide the right dimensional inputs), then you can just use this method
|
| 313 |
+
# for easy conversion from SyncBatchNorm
|
| 314 |
+
# (unfortunately, SyncBatchNorm does not store the original class - if it did
|
| 315 |
+
# we could return the one that was originally created)
|
| 316 |
+
return
|
| 317 |
+
|
| 318 |
+
def revert_sync_batchnorm(module):
|
| 319 |
+
# this is very similar to the function that it is trying to revert:
|
| 320 |
+
# https://github.com/pytorch/pytorch/blob/c8b3686a3e4ba63dc59e5dcfe5db3430df256833/torch/nn/modules/batchnorm.py#L679
|
| 321 |
+
module_output = module
|
| 322 |
+
if isinstance(module, torch.nn.modules.batchnorm.SyncBatchNorm):
|
| 323 |
+
new_cls = BatchNormXd
|
| 324 |
+
module_output = BatchNormXd(module.num_features,
|
| 325 |
+
module.eps, module.momentum,
|
| 326 |
+
module.affine,
|
| 327 |
+
module.track_running_stats)
|
| 328 |
+
if module.affine:
|
| 329 |
+
with torch.no_grad():
|
| 330 |
+
module_output.weight = module.weight
|
| 331 |
+
module_output.bias = module.bias
|
| 332 |
+
module_output.running_mean = module.running_mean
|
| 333 |
+
module_output.running_var = module.running_var
|
| 334 |
+
module_output.num_batches_tracked = module.num_batches_tracked
|
| 335 |
+
if hasattr(module, "qconfig"):
|
| 336 |
+
module_output.qconfig = module.qconfig
|
| 337 |
+
for name, child in module.named_children():
|
| 338 |
+
module_output.add_module(name, revert_sync_batchnorm(child))
|
| 339 |
+
del module
|
| 340 |
+
return module_output
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
class TracedModel(nn.Module):
|
| 344 |
+
|
| 345 |
+
def __init__(self, model=None, device=None, img_size=(640,640)):
|
| 346 |
+
super(TracedModel, self).__init__()
|
| 347 |
+
|
| 348 |
+
print(" Convert model to Traced-model... ")
|
| 349 |
+
self.stride = model.stride
|
| 350 |
+
self.names = model.names
|
| 351 |
+
self.model = model
|
| 352 |
+
|
| 353 |
+
self.model = revert_sync_batchnorm(self.model)
|
| 354 |
+
self.model.to('cpu')
|
| 355 |
+
self.model.eval()
|
| 356 |
+
|
| 357 |
+
self.detect_layer = self.model.model[-1]
|
| 358 |
+
self.model.traced = True
|
| 359 |
+
|
| 360 |
+
rand_example = torch.rand(1, 3, img_size, img_size)
|
| 361 |
+
|
| 362 |
+
traced_script_module = torch.jit.trace(self.model, rand_example, strict=False)
|
| 363 |
+
#traced_script_module = torch.jit.script(self.model)
|
| 364 |
+
traced_script_module.save("traced_model.pt")
|
| 365 |
+
print(" traced_script_module saved! ")
|
| 366 |
+
self.model = traced_script_module
|
| 367 |
+
self.model.to(device)
|
| 368 |
+
self.detect_layer.to(device)
|
| 369 |
+
print(" model is traced! \n")
|
| 370 |
+
|
| 371 |
+
def forward(self, x, augment=False, profile=False):
|
| 372 |
+
out = self.model(x)
|
| 373 |
+
out = self.detect_layer(out)
|
| 374 |
+
return out
|