Spaces:
Running
Running
File size: 28,709 Bytes
a87bc00 bcf08f8 a87bc00 2cc0cb0 a87bc00 cd8ad01 529eea1 bcf08f8 7b11062 d887fe7 a87bc00 bcf08f8 a87bc00 c27c36d a87bc00 bcf08f8 029ffc9 bcf08f8 f18a30e 63ec771 a92d4d8 08c56ef a92d4d8 bcf08f8 029ffc9 2cbc17e 62f1d2a bcf08f8 97be419 bcf08f8 a87bc00 bcf08f8 a87bc00 2cbc17e a87bc00 bcf08f8 2cbc17e bcf08f8 a87bc00 bcf08f8 a87bc00 bcf08f8 a87bc00 bcf08f8 029ffc9 2cbc17e 029ffc9 2cbc17e 029ffc9 bcf08f8 029ffc9 bcf08f8 029ffc9 a87bc00 bcf08f8 2cbc17e d5beb0e bcf08f8 54ed831 bcf08f8 2cbc17e bcf08f8 2cbc17e bcf08f8 2cbc17e 54ed831 bcf08f8 2cbc17e 54ed831 bcf08f8 2cc0cb0 2cbc17e 2cc0cb0 2cbc17e 2cc0cb0 2cbc17e 2cc0cb0 2cbc17e 2cc0cb0 2cbc17e 2cc0cb0 54ed831 bcf08f8 2cbc17e bcf08f8 2cbc17e bcf08f8 2cbc17e bcf08f8 2cbc17e bcf08f8 2cbc17e bcf08f8 2cbc17e bcf08f8 2cbc17e bcf08f8 2cbc17e bcf08f8 2cbc17e bcf08f8 2cbc17e bcf08f8 2cbc17e 54ed831 878b4f2 2cbc17e 878b4f2 2cbc17e 878b4f2 bcf08f8 54ed831 bcf08f8 7a966d7 2cbc17e 6542f5d 2cbc17e bcf08f8 2cbc17e 1df8bb0 bcf08f8 1df8bb0 bcf08f8 a87bc00 bcf08f8 2cbc17e bcf08f8 2cbc17e bcf08f8 884d940 6542f5d 2cbc17e de45d29 cbcdc2b 2cbc17e 029ffc9 2cbc17e 029ffc9 2cbc17e 029ffc9 2cbc17e bcf08f8 2cbc17e 029ffc9 bcf08f8 2cbc17e 029ffc9 bcf08f8 2cbc17e 029ffc9 bcf08f8 029ffc9 2cbc17e 029ffc9 2cbc17e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 |
import random
import matplotlib.pyplot as plt
import nltk
from nltk.tokenize import word_tokenize, sent_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from nltk.text import Text
from nltk.probability import FreqDist
from cleantext import clean
import textract
import urllib.request
from io import BytesIO
import sys
import pandas as pd
import cv2
import re
from wordcloud import WordCloud, ImageColorGenerator
from textblob import TextBlob
from PIL import Image
import os
import gradio as gr
from dotenv import load_dotenv
import groq
import json
import traceback
import numpy as np
import unidecode
import contractions
from sklearn.feature_extraction.text import TfidfVectorizer
# Load environment variables
load_dotenv()
# Download NLTK resources (Ensure this runs once or handle caching)
nltk.download(['stopwords', 'wordnet', 'words'])
nltk.download('punkt')
nltk.download('punkt_tab')
# Initialize Groq client
groq_api_key = os.getenv("GROQ_API_KEY")
groq_client = groq.Groq(api_key=groq_api_key) if groq_api_key else None
# Stopwords customization
stop_words = set(stopwords.words('english'))
stop_words.update({'ask', 'much', 'thank', 'etc.', 'e', 'We', 'In', 'ed', 'pa', 'This', 'also', 'A', 'fu', 'To', '5', 'ing', 'er', '2'}) # Ensure stop_words is a set
# --- Parsing & Preprocessing Functions ---
def Parsing(parsed_text):
try:
if hasattr(parsed_text, 'name'):
file_path = parsed_text.name
else:
file_path = parsed_text
# Ensure textract handles encoding correctly or handle errors
raw_party = textract.process(file_path) # Removed encoding/method for broader compatibility
decoded_text = raw_party.decode('utf-8', errors='ignore') # Decode bytes to string, handling errors
return clean(decoded_text) # Pass decoded string to clean
except Exception as e:
print(f"Error parsing PDF: {e}")
return f"Error parsing PDF: {e}"
def clean_text(text):
text = text.encode("ascii", errors="ignore").decode("ascii")
text = unidecode.unidecode(text)
text = contractions.fix(text)
text = re.sub(r"\n", " ", text)
text = re.sub(r"\t", " ", text)
text = re.sub(r"/ ", " ", text)
text = text.strip()
text = re.sub(" +", " ", text).strip()
text = [word for word in text.split() if word not in stop_words]
return ' '.join(text)
def Preprocess(textParty):
text1Party = re.sub('[^A-Za-z0-9]+', ' ', textParty)
pattern = re.compile(r'\b(' + r'|'.join(stopwords.words('english')) + r')\b\s*')
text2Party = pattern.sub('', text1Party)
return text2Party
# --- Core Analysis Functions ---
def generate_summary(text):
if not groq_client:
return "Summarization is not available. Please set up your GROQ_API_KEY in the .env file."
if len(text) > 10000:
text = text[:10000]
try:
completion = groq_client.chat.completions.create(
model="llama3-8b-8192", # Or your preferred model
messages=[
{"role": "system", "content": "You are a helpful assistant that summarizes political manifestos. Provide a concise, objective summary that captures the key policy proposals, themes, and promises in the manifesto."},
{"role": "user", "content": f"Please summarize the following political manifesto text in about 300-500 words, focusing on the main policy areas, promises, and themes:\n{text}"}
],
temperature=0.3,
max_tokens=800
)
return completion.choices[0].message.content
except Exception as e:
return f"Error generating summary: {str(e)}"
def fDistance(text2Party):
word_tokens_party = word_tokenize(text2Party)
fdistance = FreqDist(word_tokens_party).most_common(10)
mem = {x[0]: x[1] for x in fdistance}
vectorizer = TfidfVectorizer(max_features=15, stop_words='english')
try:
tfidf_matrix = vectorizer.fit_transform(sent_tokenize(text2Party))
feature_names = vectorizer.get_feature_names_out()
tfidf_scores = {}
sentences = sent_tokenize(text2Party)
for i, word in enumerate(feature_names):
scores = []
for j in range(tfidf_matrix.shape[0]): # Iterate through sentences
if i < tfidf_matrix.shape[1]: # Check if word index is valid for this sentence vector
scores.append(tfidf_matrix[j, i])
if scores:
tfidf_scores[word] = sum(scores) / len(scores) # Average TF-IDF score across sentences
combined_scores = {}
all_words = set(list(mem.keys()) + list(tfidf_scores.keys()))
max_freq = max(mem.values()) if mem else 1
max_tfidf = max(tfidf_scores.values()) if tfidf_scores else 1
for word in all_words:
freq_score = mem.get(word, 0) / max_freq
tfidf_score = tfidf_scores.get(word, 0) / max_tfidf
combined_scores[word] = (freq_score * 0.3) + (tfidf_score * 0.7)
top_words = dict(sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)[:10])
return normalize(top_words)
except ValueError as ve: # Handle case where TF-IDF fails (e.g., empty after processing)
print(f"Warning: TF-IDF failed, using only frequency: {ve}")
# Fallback to just normalized frequency if TF-IDF fails
if mem:
max_freq = max(mem.values())
return {k: v / max_freq for k, v in list(mem.items())[:10]} # Return top 10 freq, normalized
else:
return {}
def normalize(d, target=1.0):
raw = sum(d.values())
factor = target / raw if raw != 0 else 0
return {key: value * factor for key, value in d.items()}
# --- Visualization Functions with Error Handling ---
def safe_plot(func, *args, **kwargs):
try:
plt.clf()
func(*args, **kwargs)
buf = BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight') # Add bbox_inches for better fit
buf.seek(0)
img = Image.open(buf)
plt.close() # Use plt.close() instead of clf for better memory management after save
return img
except Exception as e:
print(f"Plotting error in safe_plot: {e}")
traceback.print_exc() # Print traceback for debugging
return None # Return None on error
def fDistancePlot(text2Party):
def plot_func():
tokens = word_tokenize(text2Party)
if not tokens:
plt.text(0.5, 0.5, "No data to plot", ha='center', va='center')
return
fdist = FreqDist(tokens)
fdist.plot(15, title='Frequency Distribution')
plt.xticks(rotation=45, ha='right') # Rotate x-axis labels if needed
plt.tight_layout()
return safe_plot(plot_func)
def DispersionPlot(textParty):
try:
word_tokens_party = word_tokenize(textParty)
if not word_tokens_party:
return None
moby = Text(word_tokens_party)
fdistance = FreqDist(word_tokens_party)
# Get top 5 words, handle potential IndexError if less than 5 unique words
common_words = fdistance.most_common(6)
if len(common_words) < 5:
word_Lst = [word for word, _ in common_words]
else:
word_Lst = [common_words[x][0] for x in range(5)]
if not word_Lst:
return None
plt.figure(figsize=(10, 5)) # Adjust figure size
plt.title('Dispersion Plot')
moby.dispersion_plot(word_Lst)
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
img = Image.open(buf)
plt.close() # Close the figure
return img
except Exception as e:
print(f"Dispersion plot error: {e}")
traceback.print_exc()
return None
def word_cloud_generator(parsed_text_name, text_Party):
try:
# Handle case where parsed_text_name might not have .name
filename_lower = ""
if hasattr(parsed_text_name, 'name') and parsed_text_name.name:
filename_lower = parsed_text_name.name.lower()
elif isinstance(parsed_text_name, str):
filename_lower = parsed_text_name.lower()
mask_path = None
if 'bjp' in filename_lower:
mask_path = 'bjpImg2.jpeg'
elif 'congress' in filename_lower:
mask_path = 'congress3.jpeg'
elif 'aap' in filename_lower:
mask_path = 'aapMain2.jpg'
# Generate word cloud
if text_Party.strip() == "":
raise ValueError("Text for word cloud is empty")
if mask_path and os.path.exists(mask_path):
orgImg = Image.open(mask_path)
# Ensure mask is in the right format (e.g., uint8)
if orgImg.mode != 'RGB':
orgImg = orgImg.convert('RGB')
mask = np.array(orgImg)
wordcloud = WordCloud(max_words=3000, mask=mask, background_color='white').generate(text_Party) # Added background color
else:
wordcloud = WordCloud(max_words=2000, background_color='white').generate(text_Party)
plt.figure(figsize=(8, 6)) # Set figure size
plt.imshow(wordcloud, interpolation='bilinear') # Use bilinear interpolation
plt.axis("off")
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
img = Image.open(buf)
plt.close() # Close the figure
return img
except Exception as e:
print(f"Word cloud error: {e}")
traceback.print_exc()
return None # Return None on error
def get_all_phases_containing_tar_wrd(target_word, tar_passage, left_margin=10, right_margin=10, numLins=4):
"""
Function to get all the phrases that contain the target word in a text/passage.
"""
if not target_word or target_word.strip() == "":
return "Please enter a search term"
tokens = nltk.word_tokenize(tar_passage)
text = nltk.Text(tokens)
c = nltk.ConcordanceIndex(text.tokens, key=lambda s: s.lower())
offsets = c.offsets(target_word)
if not offsets:
return f"Word '{target_word}' not found."
concordance_txt = [
text.tokens[max(0, offset - left_margin):offset + right_margin]
for offset in offsets[:numLins]
]
result = [' '.join(con_sub) for con_sub in concordance_txt]
return '\n'.join(result) # Use newline for better readability in textbox
# --- Main Analysis Function ---
def analysis(Manifesto, Search):
try:
if Manifesto is None:
return "No file uploaded", {}, None, None, None, None, None, "No file uploaded"
if Search.strip() == "":
Search = "government"
raw_party = Parsing(Manifesto)
if isinstance(raw_party, str) and raw_party.startswith("Error"):
return raw_party, {}, None, None, None, None, None, "Parsing failed"
text_Party = clean_text(raw_party)
text_Party_processed = Preprocess(text_Party)
summary = generate_summary(raw_party) # Use raw_party for summary for more context?
# --- Sentiment Analysis ---
if not text_Party_processed.strip():
# Handle empty text after processing
df_dummy = pd.DataFrame({'Polarity_Label': ['Neutral'], 'Subjectivity_Label': ['Low']})
polarity_val = 0.0
subjectivity_val = 0.0
else:
polarity_val = TextBlob(text_Party_processed).sentiment.polarity
subjectivity_val = TextBlob(text_Party_processed).sentiment.subjectivity
polarity_label = 'Positive' if polarity_val > 0 else 'Negative' if polarity_val < 0 else 'Neutral'
subjectivity_label = 'High' if subjectivity_val > 0.5 else 'Low'
df_dummy = pd.DataFrame({'Polarity_Label': [polarity_label], 'Subjectivity_Label': [subjectivity_label]})
# --- Generate Plots with Safe Plotting ---
# Pass the potentially empty text and handle inside plotting functions
sentiment_plot = safe_plot(lambda: df_dummy['Polarity_Label'].value_counts().plot(kind='bar', color="#FF9F45", title='Sentiment Analysis'))
subjectivity_plot = safe_plot(lambda: df_dummy['Subjectivity_Label'].value_counts().plot(kind='bar', color="#B667F1", title='Subjectivity Analysis'))
freq_plot = fDistancePlot(text_Party_processed)
dispersion_plot = DispersionPlot(text_Party_processed)
wordcloud = word_cloud_generator(Manifesto, text_Party_processed) # Pass Manifesto object itself
fdist_Party = fDistance(text_Party_processed)
searChRes = get_all_phases_containing_tar_wrd(Search, text_Party_processed)
return searChRes, fdist_Party, sentiment_plot, subjectivity_plot, wordcloud, freq_plot, dispersion_plot, summary
except Exception as e:
error_msg = f"Critical error in analysis function: {str(e)}"
print(error_msg)
traceback.print_exc()
# Return error messages/images in the correct order
return error_msg, {}, None, None, None, None, None, "Analysis failed"
# --- Gradio Interface ---
# Use Blocks for custom layout
with gr.Blocks(title='Manifesto Analysis') as demo:
gr.Markdown("# Manifesto Analysis")
# Input Section
with gr.Row():
with gr.Column(scale=1): # Adjust scale if needed
file_input = gr.File(label="Upload Manifesto PDF", file_types=[".pdf"])
with gr.Column(scale=1):
search_input = gr.Textbox(label="Search Term", placeholder="Enter a term to search in the manifesto")
submit_btn = gr.Button("Analyze Manifesto", variant='primary') # Make button prominent
# Output Section using Tabs
with gr.Tabs():
# --- Summary Tab ---
with gr.TabItem("Summary"):
summary_output = gr.Textbox(label='AI-Generated Summary', lines=10, interactive=False)
# --- Search Results Tab ---
with gr.TabItem("Search Results"):
search_output = gr.Textbox(label='Context Based Search Results', lines=10, interactive=False)
# --- Key Topics Tab ---
with gr.TabItem("Key Topics"):
topics_output = gr.Label(label="Most Relevant Topics (LLM Enhanced)", num_top_classes=10) # Show top 10
# --- Visualizations Tab ---
with gr.TabItem("Visualizations"):
# Use Rows and Columns for better arrangement
with gr.Row(): # Row 1: Sentiment & Subjectivity
with gr.Column():
sentiment_output = gr.Image(label='Sentiment Analysis', interactive=False, height=400) # Set height
with gr.Column():
subjectivity_output = gr.Image(label='Subjectivity Analysis', interactive=False, height=400)
with gr.Row(): # Row 2: Word Cloud & Frequency
with gr.Column():
wordcloud_output = gr.Image(label='Word Cloud', interactive=False, height=400)
with gr.Column():
freq_output = gr.Image(label='Frequency Distribution', interactive=False, height=400)
with gr.Row(): # Row 3: Dispersion Plot (Full width)
with gr.Column():
dispersion_output = gr.Image(label='Dispersion Plot', interactive=False, height=400) # Adjust height as needed
# --- Link Button Click to Function and Outputs ---
# Ensure the order of outputs matches the function return order
submit_btn.click(
fn=analysis,
inputs=[file_input, search_input],
outputs=[
search_output, # 1
topics_output, # 2
sentiment_output, # 3
subjectivity_output, # 4
wordcloud_output, # 5
freq_output, # 6
dispersion_output, # 7
summary_output # 8
],
concurrency_limit=1 # Limit concurrent analyses if needed
)
# --- Examples ---
gr.Examples(
examples=[
["Example/AAP_Manifesto_2019.pdf", "government"],
["Example/Bjp_Manifesto_2019.pdf", "environment"],
["Example/Congress_Manifesto_2019.pdf", "safety"]
],
inputs=[file_input, search_input],
outputs=[search_output, topics_output, sentiment_output, subjectivity_output, wordcloud_output, freq_output, dispersion_output, summary_output], # Link examples to outputs
fn=analysis # Run analysis on example click
)
# Launch the app
if __name__ == "__main__":
demo.launch(debug=True, share=False, show_error=True)
# import random
# import matplotlib.pyplot as plt
# import nltk
# from nltk.tokenize import word_tokenize, sent_tokenize
# from nltk.corpus import stopwords
# from nltk.stem import WordNetLemmatizer
# from nltk.text import Text
# from nltk.probability import FreqDist
# from cleantext import clean
# import textract
# import urllib.request
# from io import BytesIO
# import sys
# import pandas as pd
# import cv2
# import re
# from wordcloud import WordCloud, ImageColorGenerator
# from textblob import TextBlob
# from PIL import Image
# import os
# import gradio as gr
# from dotenv import load_dotenv
# import groq
# import json
# import traceback
# import numpy as np
# import unidecode
# import contractions
# from sklearn.feature_extraction.text import TfidfVectorizer
# # Load environment variables
# load_dotenv()
# # Download NLTK resources
# nltk.download(['stopwords', 'wordnet', 'words'])
# nltk.download('punkt')
# nltk.download('punkt_tab')
# # Initialize Groq client
# groq_api_key = os.getenv("GROQ_API_KEY")
# groq_client = groq.Groq(api_key=groq_api_key) if groq_api_key else None
# # Stopwords customization
# stop_words = set(stopwords.words('english'))
# stop_words.update('ask','much','thank','etc.', 'e', 'We', 'In', 'ed','pa', 'This','also', 'A', 'fu','To','5','ing', 'er', '2')
# # --- Parsing & Preprocessing Functions ---
# def Parsing(parsed_text):
# try:
# if hasattr(parsed_text, 'name'):
# file_path = parsed_text.name
# else:
# file_path = parsed_text
# raw_party = textract.process(file_path, encoding='ascii', method='pdfminer')
# return clean(raw_party)
# except Exception as e:
# print(f"Error parsing PDF: {e}")
# return f"Error parsing PDF: {e}"
# def clean_text(text):
# text = text.encode("ascii", errors="ignore").decode("ascii")
# text = unidecode.unidecode(text)
# text = contractions.fix(text)
# text = re.sub(r"\n", " ", text)
# text = re.sub(r"\t", " ", text)
# text = re.sub(r"/ ", " ", text)
# text = text.strip()
# text = re.sub(" +", " ", text).strip()
# text = [word for word in text.split() if word not in stop_words]
# return ' '.join(text)
# def Preprocess(textParty):
# text1Party = re.sub('[^A-Za-z0-9]+', ' ', textParty)
# pattern = re.compile(r'\b(' + r'|'.join(stopwords.words('english')) + r')\b\s*')
# text2Party = pattern.sub('', text1Party)
# return text2Party
# # --- Core Analysis Functions ---
# def generate_summary(text):
# if not groq_client:
# return "Summarization is not available. Please set up your GROQ_API_KEY in the .env file."
# if len(text) > 10000:
# text = text[:10000]
# try:
# completion = groq_client.chat.completions.create(
# model="llama3-8b-8192",
# messages=[
# {"role": "system", "content": "You are a helpful assistant that summarizes political manifestos. Provide a concise, objective summary that captures the key policy proposals, themes, and promises in the manifesto."},
# {"role": "user", "content": f"Please summarize the following political manifesto text in about 300-500 words, focusing on the main policy areas, promises, and themes:\n\n{text}"}
# ],
# temperature=0.3,
# max_tokens=800
# )
# return completion.choices[0].message.content
# except Exception as e:
# return f"Error generating summary: {str(e)}"
# def fDistance(text2Party):
# word_tokens_party = word_tokenize(text2Party)
# fdistance = FreqDist(word_tokens_party).most_common(10)
# mem = {x[0]: x[1] for x in fdistance}
# vectorizer = TfidfVectorizer(max_features=15, stop_words='english')
# tfidf_matrix = vectorizer.fit_transform(sent_tokenize(text2Party))
# feature_names = vectorizer.get_feature_names_out()
# tfidf_scores = {}
# for i, word in enumerate(feature_names):
# scores = [tfidf_matrix[j, i] for j in range(len(sent_tokenize(text2Party))) if i < tfidf_matrix[j].shape[1]]
# if scores:
# tfidf_scores[word] = sum(scores) / len(scores)
# combined_scores = {}
# for word in set(list(mem.keys()) + list(tfidf_scores.keys())):
# freq_score = mem.get(word, 0) / max(mem.values()) if mem else 0
# tfidf_score = tfidf_scores.get(word, 0) / max(tfidf_scores.values()) if tfidf_scores else 0
# combined_scores[word] = (freq_score * 0.3) + (tfidf_score * 0.7)
# top_words = dict(sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)[:10])
# return normalize(top_words)
# def normalize(d, target=1.0):
# raw = sum(d.values())
# factor = target / raw if raw != 0 else 0
# return {key: value * factor for key, value in d.items()}
# # --- Visualization Functions with Error Handling ---
# def safe_plot(func, *args, **kwargs):
# try:
# plt.clf()
# func(*args, **kwargs)
# buf = BytesIO()
# plt.savefig(buf, format='png')
# buf.seek(0)
# return Image.open(buf)
# except Exception as e:
# print(f"Plotting error: {e}")
# return None
# def fDistancePlot(text2Party):
# return safe_plot(lambda: FreqDist(word_tokenize(text2Party)).plot(15, title='Frequency Distribution'))
# def DispersionPlot(textParty):
# try:
# word_tokens_party = word_tokenize(textParty)
# moby = Text(word_tokens_party) # Ensure Text is imported
# fdistance = FreqDist(word_tokens_party)
# word_Lst = [fdistance.most_common(6)[x][0] for x in range(5)]
# plt.figure(figsize=(4, 3))
# plt.title('Dispersion Plot')
# moby.dispersion_plot(word_Lst)
# plt.tight_layout()
# buf = BytesIO()
# plt.savefig(buf, format='png')
# buf.seek(0)
# img = Image.open(buf)
# plt.clf()
# return img
# except Exception as e:
# print(f"Dispersion plot error: {e}")
# return None
# def word_cloud_generator(parsed_text_name, text_Party):
# try:
# parsed = parsed_text_name.lower()
# if 'bjp' in parsed:
# mask_path = 'bjpImg2.jpeg'
# elif 'congress' in parsed:
# mask_path = 'congress3.jpeg'
# elif 'aap' in parsed:
# mask_path = 'aapMain2.jpg'
# else:
# mask_path = None
# if mask_path and os.path.exists(mask_path):
# orgImg = Image.open(mask_path)
# mask = np.array(orgImg)
# wordcloud = WordCloud(max_words=3000, mask=mask).generate(text_Party)
# plt.imshow(wordcloud)
# else:
# wordcloud = WordCloud(max_words=2000).generate(text_Party)
# plt.imshow(wordcloud)
# plt.axis("off")
# buf = BytesIO()
# plt.savefig(buf, format='png')
# buf.seek(0)
# return Image.open(buf)
# except Exception as e:
# print(f"Word cloud error: {e}")
# return None
# def get_all_phases_containing_tar_wrd(target_word, tar_passage, left_margin=10, right_margin=10, numLins=4):
# """
# Function to get all the phrases that contain the target word in a text/passage.
# """
# if not target_word or target_word.strip() == "":
# return "Please enter a search term"
# tokens = nltk.word_tokenize(tar_passage)
# text = nltk.Text(tokens)
# c = nltk.ConcordanceIndex(text.tokens, key=lambda s: s.lower())
# offsets = c.offsets(target_word)
# concordance_txt = [
# text.tokens[max(0, offset - left_margin):offset + right_margin]
# for offset in offsets[:numLins]
# ]
# result = [' '.join(con_sub) for con_sub in concordance_txt]
# return '\n'.join(result)
# # --- Main Analysis Function ---
# def analysis(Manifesto, Search):
# try:
# if Manifesto is None:
# return "No file uploaded", {}, None, None, None, None, None, "No file uploaded"
# if Search.strip() == "":
# Search = "government"
# raw_party = Parsing(Manifesto)
# if isinstance(raw_party, str) and raw_party.startswith("Error"):
# return raw_party, {}, None, None, None, None, None, "Parsing failed"
# text_Party = clean_text(raw_party)
# text_Party_processed = Preprocess(text_Party)
# summary = generate_summary(raw_party)
# df = pd.DataFrame([{'Content': text_Party_processed}], columns=['Content'])
# df['Subjectivity'] = df['Content'].apply(lambda x: TextBlob(x).sentiment.subjectivity)
# df['Polarity'] = df['Content'].apply(lambda x: TextBlob(x).sentiment.polarity)
# df['Polarity_Label'] = df['Polarity'].apply(lambda x: 'Positive' if x > 0 else 'Negative' if x < 0 else 'Neutral')
# df['Subjectivity_Label'] = df['Subjectivity'].apply(lambda x: 'High' if x > 0.5 else 'Low')
# # Generate Plots with Safe Plotting
# sentiment_plot = safe_plot(lambda: df['Polarity_Label'].value_counts().plot(kind='bar', color="#FF9F45", title='Sentiment Analysis'))
# subjectivity_plot = safe_plot(lambda: df['Subjectivity_Label'].value_counts().plot(kind='bar', color="#B667F1", title='Subjectivity Analysis'))
# freq_plot = fDistancePlot(text_Party_processed)
# dispersion_plot = DispersionPlot(text_Party_processed)
# wordcloud = word_cloud_generator(Manifesto.name, text_Party_processed)
# fdist_Party = fDistance(text_Party_processed)
# searChRes = get_all_phases_containing_tar_wrd(Search, text_Party_processed)
# return searChRes, fdist_Party, sentiment_plot, subjectivity_plot, wordcloud, freq_plot, dispersion_plot, summary
# except Exception as e:
# error_msg = f"Critical error: {str(e)}"
# print(error_msg)
# traceback.print_exc()
# return error_msg, {}, None, None, None, None, None, "Analysis failed"
# # --- Gradio Interface ---
# Search_txt = "text"
# filePdf = "file"
# with gr.Blocks(title='Manifesto Analysis') as demo:
# gr.Markdown("# Manifesto Analysis")
# with gr.Row():
# with gr.Column():
# file_input = gr.File(label="Upload Manifesto PDF", file_types=[".pdf"])
# search_input = gr.Textbox(label="Search Term", placeholder="Enter a term to search in the manifesto")
# submit_btn = gr.Button("Analyze Manifesto")
# with gr.Tabs():
# with gr.TabItem("Summary"): gr.Textbox(label='LLM Based Summary', lines=10)
# with gr.TabItem("Search Results"): gr.Textbox(label='Context Based Search')
# with gr.TabItem("Key Topics"): gr.Label(label="Most Relevant Topics (LLM Enhanced)")
# with gr.TabItem("Visualizations"):
# with gr.Row():
# gr.Image(label='Sentiment Analysis'), gr.Image(label='Subjectivity Analysis')
# with gr.Row():
# gr.Image(label='Word Cloud'), gr.Image(label='Frequency Distribution')
# gr.Image(label='Dispersion Plot')
# submit_btn.click(
# fn=analysis,
# inputs=[file_input, search_input],
# outputs=[
# gr.Textbox(label='Context Based Search'),
# gr.Label(label="Most Relevant Topics (LLM Enhanced)"),
# gr.Image(label='Sentiment Analysis'),
# gr.Image(label='Subjectivity Analysis'),
# gr.Image(label='Word Cloud'),
# gr.Image(label='Frequency Distribution'),
# gr.Image(label='Dispersion Plot'),
# gr.Textbox(label='AI-Generated Summary', lines=10)
# ]
# )
# gr.Examples(
# examples=[
# ["Example/AAP_Manifesto_2019.pdf", "government"],
# ["Example/Bjp_Manifesto_2019.pdf", "environment"],
# ["Example/Congress_Manifesto_2019.pdf", "safety"]
# ],
# inputs=[file_input, search_input]
# )
# demo.launch(debug=True, share=False, show_error=True) |