File size: 20,580 Bytes
a87bc00
 
 
bcf08f8
a87bc00
 
2cc0cb0
a87bc00
 
cd8ad01
529eea1
bcf08f8
 
7b11062
d887fe7
a87bc00
bcf08f8
a87bc00
 
c27c36d
a87bc00
bcf08f8
029ffc9
 
bcf08f8
f18a30e
63ec771
a92d4d8
08c56ef
a92d4d8
9f93f0e
bcf08f8
9f93f0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
029ffc9
2cbc17e
9f93f0e
 
 
bcf08f8
97be419
bcf08f8
a87bc00
bcf08f8
a87bc00
2cbc17e
a87bc00
bcf08f8
 
 
 
 
 
 
2cbc17e
 
 
 
bcf08f8
 
 
a87bc00
 
bcf08f8
 
 
 
 
 
 
 
 
 
a87bc00
 
bcf08f8
 
 
 
a87bc00
bcf08f8
 
029ffc9
 
 
 
 
 
2cbc17e
029ffc9
 
2cbc17e
029ffc9
bcf08f8
 
029ffc9
 
 
bcf08f8
029ffc9
a87bc00
bcf08f8
 
 
 
2cbc17e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5beb0e
bcf08f8
 
 
 
54ed831
bcf08f8
 
 
 
 
 
2cbc17e
bcf08f8
2cbc17e
 
 
bcf08f8
2cbc17e
 
 
54ed831
bcf08f8
2cbc17e
 
 
 
 
 
 
 
 
 
54ed831
bcf08f8
2cc0cb0
 
2cbc17e
 
 
2cc0cb0
2cbc17e
 
 
 
 
 
 
 
 
 
 
2cc0cb0
 
 
 
2cbc17e
2cc0cb0
 
2cbc17e
2cc0cb0
 
 
2cbc17e
2cc0cb0
54ed831
bcf08f8
 
2cbc17e
 
 
 
 
 
 
 
 
bcf08f8
2cbc17e
bcf08f8
2cbc17e
bcf08f8
2cbc17e
 
 
 
bcf08f8
 
 
2cbc17e
 
 
bcf08f8
2cbc17e
bcf08f8
2cbc17e
 
 
 
bcf08f8
2cbc17e
bcf08f8
2cbc17e
bcf08f8
2cbc17e
 
 
bcf08f8
 
2cbc17e
 
54ed831
9f93f0e
878b4f2
 
 
 
 
 
 
 
 
 
2cbc17e
 
878b4f2
 
 
 
 
2cbc17e
878b4f2
9f93f0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcf08f8
 
 
9f93f0e
bcf08f8
 
 
 
 
 
 
 
9f93f0e
 
 
 
7a966d7
9f93f0e
2cbc17e
6542f5d
2cbc17e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcf08f8
 
2cbc17e
bcf08f8
9f93f0e
 
 
bcf08f8
a87bc00
bcf08f8
2cbc17e
bcf08f8
 
2cbc17e
bcf08f8
884d940
6542f5d
9f93f0e
2cbc17e
de45d29
cbcdc2b
2cbc17e
029ffc9
2cbc17e
 
 
 
 
 
 
029ffc9
2cbc17e
 
 
 
 
 
9f93f0e
 
2cbc17e
 
 
 
 
 
029ffc9
2cbc17e
 
 
 
 
 
 
 
 
 
 
 
bcf08f8
2cbc17e
 
 
 
 
 
029ffc9
 
 
bcf08f8
9f93f0e
2cbc17e
 
 
 
 
 
 
 
 
029ffc9
bcf08f8
2cbc17e
029ffc9
 
bcf08f8
 
 
029ffc9
2cbc17e
 
 
029ffc9
 
2cbc17e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import random
import matplotlib.pyplot as plt
import nltk
from nltk.tokenize import word_tokenize, sent_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from nltk.text import Text
from nltk.probability import FreqDist
from cleantext import clean
import textract
import urllib.request
from io import BytesIO
import sys
import pandas as pd
import cv2
import re
from wordcloud import WordCloud, ImageColorGenerator
from textblob import TextBlob
from PIL import Image
import os
import gradio as gr
from dotenv import load_dotenv
import groq
import json
import traceback
import numpy as np
import unidecode
import contractions
from sklearn.feature_extraction.text import TfidfVectorizer


load_dotenv()
import nltk
import ssl

def ensure_nltk_resources():
    try:
        nltk.data.find('tokenizers/punkt')
        nltk.data.find('corpora/stopwords')
    except LookupError:
        print("NLTK resources not found. Downloading...")
        try:
            # Handling potential SSL issues (common on some systems)
            _create_unverified_https_context = ssl._create_unverified_context
        except AttributeError:
            pass
        else:
            ssl._create_default_https_context = _create_unverified_https_context

        nltk.download(['stopwords', 'wordnet', 'words'])
        nltk.download('punkt')
        nltk.download('punkt_tab')
        print("NLTK resources downloaded successfully.")


ensure_nltk_resources()

# Download NLTK resources (Ensure this runs once or handle caching)
# nltk.download(['stopwords', 'wordnet', 'words'])
# nltk.download('punkt')
# nltk.download('punkt_tab')
# Initialize Groq client
groq_api_key = os.getenv("GROQ_API_KEY")
groq_client = groq.Groq(api_key=groq_api_key) if groq_api_key else None

# Stopwords customization
stop_words = set(stopwords.words('english'))
stop_words.update({'ask', 'much', 'thank', 'etc.', 'e', 'We', 'In', 'ed', 'pa', 'This', 'also', 'A', 'fu', 'To', '5', 'ing', 'er', '2'}) # Ensure stop_words is a set

# --- Parsing & Preprocessing Functions ---
def Parsing(parsed_text):
    try:
        if hasattr(parsed_text, 'name'):
            file_path = parsed_text.name
        else:
            file_path = parsed_text
        # Ensure textract handles encoding correctly or handle errors
        raw_party = textract.process(file_path) # Removed encoding/method for broader compatibility
        decoded_text = raw_party.decode('utf-8', errors='ignore') # Decode bytes to string, handling errors
        return clean(decoded_text) # Pass decoded string to clean
    except Exception as e:
        print(f"Error parsing PDF: {e}")
        return f"Error parsing PDF: {e}"

def clean_text(text):
    text = text.encode("ascii", errors="ignore").decode("ascii")
    text = unidecode.unidecode(text)
    text = contractions.fix(text)
    text = re.sub(r"\n", " ", text)
    text = re.sub(r"\t", " ", text)
    text = re.sub(r"/ ", " ", text)
    text = text.strip()
    text = re.sub(" +", " ", text).strip()
    text = [word for word in text.split() if word not in stop_words]
    return ' '.join(text)

def Preprocess(textParty):
    text1Party = re.sub('[^A-Za-z0-9]+', ' ', textParty)
    pattern = re.compile(r'\b(' + r'|'.join(stopwords.words('english')) + r')\b\s*')
    text2Party = pattern.sub('', text1Party)
    return text2Party

# --- Core Analysis Functions ---
def generate_summary(text):
    if not groq_client:
        return "Summarization is not available. Please set up your GROQ_API_KEY in the .env file."
    if len(text) > 10000:
        text = text[:10000]
    try:
        completion = groq_client.chat.completions.create(
            model="llama3-8b-8192", # Or your preferred model
            messages=[
                {"role": "system", "content": "You are a helpful assistant that summarizes political manifestos. Provide a concise, objective summary that captures the key policy proposals, themes, and promises in the manifesto."},
                {"role": "user", "content": f"Please summarize the following political manifesto text in about 300-500 words, focusing on the main policy areas, promises, and themes:\n{text}"}
            ],
            temperature=0.3,
            max_tokens=800
        )
        return completion.choices[0].message.content
    except Exception as e:
        return f"Error generating summary: {str(e)}"

def fDistance(text2Party):
    word_tokens_party = word_tokenize(text2Party)
    fdistance = FreqDist(word_tokens_party).most_common(10)
    mem = {x[0]: x[1] for x in fdistance}
    vectorizer = TfidfVectorizer(max_features=15, stop_words='english')
    try:
        tfidf_matrix = vectorizer.fit_transform(sent_tokenize(text2Party))
        feature_names = vectorizer.get_feature_names_out()
        tfidf_scores = {}
        sentences = sent_tokenize(text2Party)
        for i, word in enumerate(feature_names):
            scores = []
            for j in range(tfidf_matrix.shape[0]): # Iterate through sentences
                 if i < tfidf_matrix.shape[1]: # Check if word index is valid for this sentence vector
                    scores.append(tfidf_matrix[j, i])
            if scores:
                tfidf_scores[word] = sum(scores) / len(scores) # Average TF-IDF score across sentences
        combined_scores = {}
        all_words = set(list(mem.keys()) + list(tfidf_scores.keys()))
        max_freq = max(mem.values()) if mem else 1
        max_tfidf = max(tfidf_scores.values()) if tfidf_scores else 1
        for word in all_words:
            freq_score = mem.get(word, 0) / max_freq
            tfidf_score = tfidf_scores.get(word, 0) / max_tfidf
            combined_scores[word] = (freq_score * 0.3) + (tfidf_score * 0.7)
        top_words = dict(sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)[:10])
        return normalize(top_words)
    except ValueError as ve: # Handle case where TF-IDF fails (e.g., empty after processing)
        print(f"Warning: TF-IDF failed, using only frequency: {ve}")
        # Fallback to just normalized frequency if TF-IDF fails
        if mem:
             max_freq = max(mem.values())
             return {k: v / max_freq for k, v in list(mem.items())[:10]} # Return top 10 freq, normalized
        else:
             return {}

def normalize(d, target=1.0):
    raw = sum(d.values())
    factor = target / raw if raw != 0 else 0
    return {key: value * factor for key, value in d.items()}

# --- Visualization Functions with Error Handling ---
def safe_plot(func, *args, **kwargs):
    try:
        plt.clf()
        func(*args, **kwargs)
        buf = BytesIO()
        plt.savefig(buf, format='png', bbox_inches='tight') # Add bbox_inches for better fit
        buf.seek(0)
        img = Image.open(buf)
        plt.close() # Use plt.close() instead of clf for better memory management after save
        return img
    except Exception as e:
        print(f"Plotting error in safe_plot: {e}")
        traceback.print_exc() # Print traceback for debugging
        return None # Return None on error

def fDistancePlot(text2Party):
    def plot_func():
        tokens = word_tokenize(text2Party)
        if not tokens:
             plt.text(0.5, 0.5, "No data to plot", ha='center', va='center')
             return
        fdist = FreqDist(tokens)
        fdist.plot(15, title='Frequency Distribution')
        plt.xticks(rotation=45, ha='right') # Rotate x-axis labels if needed
        plt.tight_layout()
    return safe_plot(plot_func)

def DispersionPlot(textParty):
    try:
        word_tokens_party = word_tokenize(textParty)
        if not word_tokens_party:
             return None
        moby = Text(word_tokens_party)
        fdistance = FreqDist(word_tokens_party)
        # Get top 5 words, handle potential IndexError if less than 5 unique words
        common_words = fdistance.most_common(6)
        if len(common_words) < 5:
            word_Lst = [word for word, _ in common_words]
        else:
            word_Lst = [common_words[x][0] for x in range(5)]

        if not word_Lst:
             return None

        plt.figure(figsize=(10, 5)) # Adjust figure size
        plt.title('Dispersion Plot')
        moby.dispersion_plot(word_Lst)
        plt.tight_layout()
        buf = BytesIO()
        plt.savefig(buf, format='png', bbox_inches='tight')
        buf.seek(0)
        img = Image.open(buf)
        plt.close() # Close the figure
        return img
    except Exception as e:
        print(f"Dispersion plot error: {e}")
        traceback.print_exc()
        return None

def word_cloud_generator(parsed_text_name, text_Party):
    try:
        # Handle case where parsed_text_name might not have .name
        filename_lower = ""
        if hasattr(parsed_text_name, 'name') and parsed_text_name.name:
            filename_lower = parsed_text_name.name.lower()
        elif isinstance(parsed_text_name, str):
             filename_lower = parsed_text_name.lower()

        mask_path = None
        if 'bjp' in filename_lower:
            mask_path = 'bjpImg2.jpeg'
        elif 'congress' in filename_lower:
            mask_path = 'congress3.jpeg'
        elif 'aap' in filename_lower:
            mask_path = 'aapMain2.jpg'

        # Generate word cloud
        if text_Party.strip() == "":
             raise ValueError("Text for word cloud is empty")

        if mask_path and os.path.exists(mask_path):
            orgImg = Image.open(mask_path)
            # Ensure mask is in the right format (e.g., uint8)
            if orgImg.mode != 'RGB':
                orgImg = orgImg.convert('RGB')
            mask = np.array(orgImg)
            wordcloud = WordCloud(max_words=3000, mask=mask, background_color='white').generate(text_Party) # Added background color
        else:
            wordcloud = WordCloud(max_words=2000, background_color='white').generate(text_Party)

        plt.figure(figsize=(8, 6)) # Set figure size
        plt.imshow(wordcloud, interpolation='bilinear') # Use bilinear interpolation
        plt.axis("off")
        plt.tight_layout()
        buf = BytesIO()
        plt.savefig(buf, format='png', bbox_inches='tight')
        buf.seek(0)
        img = Image.open(buf)
        plt.close() # Close the figure
        return img
    except Exception as e:
        print(f"Word cloud error: {e}")
        traceback.print_exc()
        return None # Return None on error

# Initial design for concordance based search
def get_all_phases_containing_tar_wrd(target_word, tar_passage, left_margin=10, right_margin=10, numLins=4):
    """
    Function to get all the phrases that contain the target word in a text/passage.
    """
    if not target_word or target_word.strip() == "":
        return "Please enter a search term"
    tokens = nltk.word_tokenize(tar_passage)
    text = nltk.Text(tokens)
    c = nltk.ConcordanceIndex(text.tokens, key=lambda s: s.lower())
    offsets = c.offsets(target_word)
    if not offsets:
         return f"Word '{target_word}' not found."
    concordance_txt = [
        text.tokens[max(0, offset - left_margin):offset + right_margin]
        for offset in offsets[:numLins]
    ]
    result = [' '.join(con_sub) for con_sub in concordance_txt]
    return '\n'.join(result) # Use newline for better readability in textbox


def get_contextual_search_result(target_word, tar_passage, groq_client_instance, max_context_length=8000):
    """
    Uses the LLM to provide contextual information about the target word within the passage.
    """
    if not target_word or target_word.strip() == "":
        return "Please enter a search term."

    if not groq_client_instance:
        return "Contextual search requires the LLM API. Please set up your GROQ_API_KEY."

    # Basic check if word exists (optional, LLM can handle it too)
    if target_word.lower() not in tar_passage.lower():
        return f"The term '{target_word}' was not found in the manifesto text."

    # Truncate passage if too long for the model/context window
    # You might need to adjust this based on your model's limits and desired performance
    if len(tar_passage) > max_context_length:
        # Simple truncation; could be improved to ensure sentences are complete
        tar_passage = tar_passage[:max_context_length]
        print(f"Warning: Passage truncated for LLM search context to {max_context_length} characters.")

    prompt = f"""
    You are given a political manifesto text and a specific search term.
    Your task is to find all relevant mentions of the search term in the text and provide a concise, informative summary of the context surrounding each mention.
    Focus on the key ideas, policies, or points related to the search term.
    If the term is not found or not relevant, state that clearly.
    Search Term: {target_word}
    Manifesto Text:
    {tar_passage}
    """

    try:
        completion = groq_client_instance.chat.completions.create(
            model="llama3-8b-8192", # Use the same or a suitable model
            messages=[
                {"role": "system", "content": "You are a helpful assistant skilled at analyzing political texts and extracting relevant information based on a search query."},
                {"role": "user", "content": prompt}
            ],
            temperature=0.2, # Low temperature for more factual extraction
            max_tokens=1000  # Adjust based on expected output length
        )
        result = completion.choices[0].message.content.strip()
        return result if result else f"No specific context for '{target_word}' could be generated."
    except Exception as e:
        error_msg = f"Error during contextual search for '{target_word}': {str(e)}"
        print(error_msg)
        traceback.print_exc()
        # Fallback to concordance if LLM fails?
        # return get_all_phases_containing_tar_wrd_fallback(target_word, tar_passage)
        return error_msg # Or return the error message directly

def analysis(Manifesto, Search):
    try:
        if Manifesto is None:
            # Ensure return order matches the outputs list
            return "No file uploaded", {}, None, None, None, None, None, "No file uploaded"
        if Search.strip() == "":
            Search = "government"
        raw_party = Parsing(Manifesto)
        if isinstance(raw_party, str) and raw_party.startswith("Error"):
            return raw_party, {}, None, None, None, None, None, "Parsing failed"
        text_Party = clean_text(raw_party)
        text_Party_processed = Preprocess(text_Party)
        
        # --- Perform Search FIRST using the ORIGINAL text for better context ---
        # Pass the original raw text for richer context to the LLM
        searChRes = get_contextual_search_result(Search, raw_party, groq_client) 

        # --- Then proceed with other analyses ---
        summary = generate_summary(raw_party) # Use raw_party for summary for more context?

        # --- Sentiment Analysis ---
        if not text_Party_processed.strip():
             # Handle empty text after processing
             df_dummy = pd.DataFrame({'Polarity_Label': ['Neutral'], 'Subjectivity_Label': ['Low']})
             polarity_val = 0.0
             subjectivity_val = 0.0
        else:
            polarity_val = TextBlob(text_Party_processed).sentiment.polarity
            subjectivity_val = TextBlob(text_Party_processed).sentiment.subjectivity
            polarity_label = 'Positive' if polarity_val > 0 else 'Negative' if polarity_val < 0 else 'Neutral'
            subjectivity_label = 'High' if subjectivity_val > 0.5 else 'Low'
            df_dummy = pd.DataFrame({'Polarity_Label': [polarity_label], 'Subjectivity_Label': [subjectivity_label]})

        # --- Generate Plots with Safe Plotting ---
        # Pass the potentially empty text and handle inside plotting functions
        sentiment_plot = safe_plot(lambda: df_dummy['Polarity_Label'].value_counts().plot(kind='bar', color="#FF9F45", title='Sentiment Analysis'))
        subjectivity_plot = safe_plot(lambda: df_dummy['Subjectivity_Label'].value_counts().plot(kind='bar', color="#B667F1", title='Subjectivity Analysis'))
        freq_plot = fDistancePlot(text_Party_processed)
        dispersion_plot = DispersionPlot(text_Party_processed)
        wordcloud = word_cloud_generator(Manifesto, text_Party_processed) # Pass Manifesto object itself
        fdist_Party = fDistance(text_Party_processed)
        
        # searChRes is now generated earlier
        
        return searChRes, fdist_Party, sentiment_plot, subjectivity_plot, wordcloud, freq_plot, dispersion_plot, summary

    except Exception as e:
        error_msg = f"Critical error in analysis function: {str(e)}"
        print(error_msg)
        traceback.print_exc()
        # Return error messages/images in the correct order
        return error_msg, {}, None, None, None, None, None, "Analysis failed"


# --- Gradio Interface (remains largely the same, just ensuring output variable names match) ---
# Use Blocks for custom layout
with gr.Blocks(title='Manifesto Analysis') as demo:
    gr.Markdown("# Manifesto Analysis")
    # Input Section
    with gr.Row():
        with gr.Column(scale=1): # Adjust scale if needed
             file_input = gr.File(label="Upload Manifesto PDF", file_types=[".pdf"])
        with gr.Column(scale=1):
             search_input = gr.Textbox(label="Search Term", placeholder="Enter a term to search in the manifesto")
             submit_btn = gr.Button("Analyze Manifesto", variant='primary') # Make button prominent

    # Output Section using Tabs
    with gr.Tabs():
        # --- Summary Tab ---
        with gr.TabItem("Summary"):
            summary_output = gr.Textbox(label='AI-Generated Summary', lines=10, interactive=False)

        # --- Search Results Tab ---
        with gr.TabItem("Search Results"):
            # Use the specific output variable defined in the layout
            search_output = gr.Textbox(label='Context Based Search Results', lines=15, interactive=False, max_lines=20) # Increased lines/max_lines

        # --- Key Topics Tab ---
        with gr.TabItem("Key Topics"):
             topics_output = gr.Label(label="Most Relevant Topics (LLM Enhanced)", num_top_classes=10) # Show top 10

        # --- Visualizations Tab ---
        with gr.TabItem("Visualizations"):
            # Use Rows and Columns for better arrangement
            with gr.Row(): # Row 1: Sentiment & Subjectivity
                with gr.Column():
                    sentiment_output = gr.Image(label='Sentiment Analysis', interactive=False, height=400) # Set height
                with gr.Column():
                    subjectivity_output = gr.Image(label='Subjectivity Analysis', interactive=False, height=400)

            with gr.Row(): # Row 2: Word Cloud & Frequency
                with gr.Column():
                    wordcloud_output = gr.Image(label='Word Cloud', interactive=False, height=400)
                with gr.Column():
                    freq_output = gr.Image(label='Frequency Distribution', interactive=False, height=400)

            with gr.Row(): # Row 3: Dispersion Plot (Full width)
                with gr.Column():
                    dispersion_output = gr.Image(label='Dispersion Plot', interactive=False, height=400) # Adjust height as needed

    # --- Link Button Click to Function and Outputs ---
    # Ensure the order of outputs matches the function return order
    submit_btn.click(
        fn=analysis,
        inputs=[file_input, search_input],
        outputs=[
            search_output,        # 1 (Now contextual)
            topics_output,        # 2
            sentiment_output,     # 3
            subjectivity_output,  # 4
            wordcloud_output,     # 5
            freq_output,          # 6
            dispersion_output,    # 7
            summary_output        # 8
        ],
        concurrency_limit=1   # Limit concurrent analyses if needed
    )

    # --- Examples ---
    gr.Examples(
        examples=[
            ["Example/AAP_Manifesto_2019.pdf", "government"],
            ["Example/Bjp_Manifesto_2019.pdf", "environment"],
            ["Example/Congress_Manifesto_2019.pdf", "safety"]
        ],
        inputs=[file_input, search_input],
        outputs=[search_output, topics_output, sentiment_output, subjectivity_output, wordcloud_output, freq_output, dispersion_output, summary_output], # Link examples to outputs
        fn=analysis # Run analysis on example click
    )

# Launch the app
if __name__ == "__main__":
    demo.launch(debug=True, share=False, show_error=True)