Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,18 +3,19 @@ import matplotlib.pyplot as plt
|
|
3 |
import nltk
|
4 |
from nltk.tokenize import word_tokenize, sent_tokenize
|
5 |
from nltk.corpus import stopwords
|
6 |
-
from nltk.stem import WordNetLemmatizer
|
7 |
from nltk.text import Text
|
8 |
from nltk.probability import FreqDist
|
9 |
from cleantext import clean
|
10 |
-
import textract
|
|
|
11 |
import urllib.request
|
12 |
from io import BytesIO
|
13 |
import sys
|
14 |
import pandas as pd
|
15 |
-
import cv2
|
16 |
import re
|
17 |
-
from wordcloud import WordCloud, ImageColorGenerator
|
18 |
from textblob import TextBlob
|
19 |
from PIL import Image
|
20 |
import os
|
@@ -28,37 +29,14 @@ import unidecode
|
|
28 |
import contractions
|
29 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
30 |
|
31 |
-
|
32 |
load_dotenv()
|
33 |
-
import nltk
|
34 |
-
import ssl
|
35 |
-
|
36 |
-
def ensure_nltk_resources():
|
37 |
-
try:
|
38 |
-
nltk.data.find('tokenizers/punkt')
|
39 |
-
nltk.data.find('corpora/stopwords')
|
40 |
-
except LookupError:
|
41 |
-
print("NLTK resources not found. Downloading...")
|
42 |
-
try:
|
43 |
-
# Handling potential SSL issues (common on some systems)
|
44 |
-
_create_unverified_https_context = ssl._create_unverified_context
|
45 |
-
except AttributeError:
|
46 |
-
pass
|
47 |
-
else:
|
48 |
-
ssl._create_default_https_context = _create_unverified_https_context
|
49 |
-
|
50 |
-
nltk.download(['stopwords', 'wordnet', 'words'])
|
51 |
-
nltk.download('punkt')
|
52 |
-
nltk.download('punkt_tab')
|
53 |
-
print("NLTK resources downloaded successfully.")
|
54 |
-
|
55 |
-
|
56 |
-
ensure_nltk_resources()
|
57 |
|
58 |
# Download NLTK resources (Ensure this runs once or handle caching)
|
59 |
# nltk.download(['stopwords', 'wordnet', 'words'])
|
60 |
# nltk.download('punkt')
|
61 |
# nltk.download('punkt_tab')
|
|
|
62 |
# Initialize Groq client
|
63 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
64 |
groq_client = groq.Groq(api_key=groq_api_key) if groq_api_key else None
|
@@ -68,16 +46,36 @@ stop_words = set(stopwords.words('english'))
|
|
68 |
stop_words.update({'ask', 'much', 'thank', 'etc.', 'e', 'We', 'In', 'ed', 'pa', 'This', 'also', 'A', 'fu', 'To', '5', 'ing', 'er', '2'}) # Ensure stop_words is a set
|
69 |
|
70 |
# --- Parsing & Preprocessing Functions ---
|
|
|
71 |
def Parsing(parsed_text):
|
|
|
|
|
|
|
72 |
try:
|
|
|
73 |
if hasattr(parsed_text, 'name'):
|
74 |
file_path = parsed_text.name
|
75 |
else:
|
|
|
76 |
file_path = parsed_text
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
except Exception as e:
|
82 |
print(f"Error parsing PDF: {e}")
|
83 |
return f"Error parsing PDF: {e}"
|
@@ -104,8 +102,9 @@ def Preprocess(textParty):
|
|
104 |
def generate_summary(text):
|
105 |
if not groq_client:
|
106 |
return "Summarization is not available. Please set up your GROQ_API_KEY in the .env file."
|
107 |
-
|
108 |
-
|
|
|
109 |
try:
|
110 |
completion = groq_client.chat.completions.create(
|
111 |
model="llama3-8b-8192", # Or your preferred model
|
@@ -120,6 +119,61 @@ def generate_summary(text):
|
|
120 |
except Exception as e:
|
121 |
return f"Error generating summary: {str(e)}"
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
def fDistance(text2Party):
|
124 |
word_tokens_party = word_tokenize(text2Party)
|
125 |
fdistance = FreqDist(word_tokens_party).most_common(10)
|
@@ -162,7 +216,7 @@ def normalize(d, target=1.0):
|
|
162 |
return {key: value * factor for key, value in d.items()}
|
163 |
|
164 |
# --- Visualization Functions with Error Handling ---
|
165 |
-
|
166 |
def safe_plot(func, *args, **kwargs):
|
167 |
"""Executes a plotting function and returns the image, handling errors."""
|
168 |
buf = None # Initialize buffer
|
@@ -195,21 +249,19 @@ def safe_plot(func, *args, **kwargs):
|
|
195 |
plt.close('all') # Aggressive close on error
|
196 |
return None
|
197 |
|
198 |
-
|
199 |
-
|
200 |
def fDistancePlot(text2Party):
|
201 |
-
"""Generates the frequency distribution plot."""
|
202 |
def plot_func():
|
203 |
tokens = word_tokenize(text2Party)
|
204 |
if not tokens:
|
205 |
-
|
206 |
-
|
207 |
fdist = FreqDist(tokens)
|
208 |
fdist.plot(15, title='Frequency Distribution')
|
209 |
-
plt.xticks(rotation=45, ha='right')
|
210 |
plt.tight_layout()
|
211 |
return safe_plot(plot_func)
|
212 |
|
|
|
213 |
def DispersionPlot(textParty):
|
214 |
"""Generates the word dispersion plot."""
|
215 |
buf = None # Initialize buffer
|
@@ -232,7 +284,7 @@ def DispersionPlot(textParty):
|
|
232 |
print("Warning: No common words found for dispersion plot.")
|
233 |
return None
|
234 |
|
235 |
-
# ---
|
236 |
fig = plt.figure(figsize=(10, 5)) # Create figure explicitly
|
237 |
plt.title('Dispersion Plot')
|
238 |
# Call dispersion_plot without 'ax' argument
|
@@ -264,16 +316,17 @@ def DispersionPlot(textParty):
|
|
264 |
plt.close('all') # Aggressive close on error
|
265 |
return None # Return None on error
|
266 |
|
267 |
-
|
268 |
def word_cloud_generator(parsed_text_name, text_Party):
|
269 |
"""Generates the word cloud image."""
|
270 |
buf = None # Initialize buffer
|
271 |
try:
|
|
|
272 |
filename_lower = ""
|
273 |
if hasattr(parsed_text_name, 'name') and parsed_text_name.name:
|
274 |
filename_lower = parsed_text_name.name.lower()
|
275 |
elif isinstance(parsed_text_name, str):
|
276 |
-
|
277 |
|
278 |
mask_path = None
|
279 |
if 'bjp' in filename_lower:
|
@@ -283,16 +336,18 @@ def word_cloud_generator(parsed_text_name, text_Party):
|
|
283 |
elif 'aap' in filename_lower:
|
284 |
mask_path = 'aapMain2.jpg'
|
285 |
|
|
|
286 |
if text_Party.strip() == "":
|
287 |
-
|
288 |
|
289 |
# Generate word cloud object
|
290 |
if mask_path and os.path.exists(mask_path):
|
291 |
orgImg = Image.open(mask_path)
|
|
|
292 |
if orgImg.mode != 'RGB':
|
293 |
orgImg = orgImg.convert('RGB')
|
294 |
mask = np.array(orgImg)
|
295 |
-
wordcloud = WordCloud(max_words=3000, mask=mask, background_color='white', mode='RGBA').generate(text_Party)
|
296 |
else:
|
297 |
wordcloud = WordCloud(max_words=2000, background_color='white', mode='RGBA').generate(text_Party)
|
298 |
|
@@ -305,13 +360,13 @@ def word_cloud_generator(parsed_text_name, text_Party):
|
|
305 |
buf = BytesIO()
|
306 |
# Handle potential apply_aspect error for word cloud too
|
307 |
try:
|
308 |
-
fig.savefig(buf, format='png', bbox_inches='tight', dpi=
|
309 |
except AttributeError as ae:
|
310 |
if "apply_aspect" in str(ae):
|
311 |
print(f"Warning: bbox_inches='tight' failed for Word Cloud ({ae}), saving without it.")
|
312 |
buf.seek(0)
|
313 |
buf = BytesIO()
|
314 |
-
fig.savefig(buf, format='png', dpi=
|
315 |
else:
|
316 |
raise
|
317 |
buf.seek(0)
|
@@ -327,109 +382,23 @@ def word_cloud_generator(parsed_text_name, text_Party):
|
|
327 |
plt.close('all') # Aggressive close on error
|
328 |
return None # Return None on error
|
329 |
|
330 |
-
|
331 |
-
# Initial design for concordance based search
|
332 |
-
def get_all_phases_containing_tar_wrd(target_word, tar_passage, left_margin=10, right_margin=10, numLins=4):
|
333 |
-
"""
|
334 |
-
Function to get all the phrases that contain the target word in a text/passage.
|
335 |
-
"""
|
336 |
-
if not target_word or target_word.strip() == "":
|
337 |
-
return "Please enter a search term"
|
338 |
-
tokens = nltk.word_tokenize(tar_passage)
|
339 |
-
text = nltk.Text(tokens)
|
340 |
-
c = nltk.ConcordanceIndex(text.tokens, key=lambda s: s.lower())
|
341 |
-
offsets = c.offsets(target_word)
|
342 |
-
if not offsets:
|
343 |
-
return f"Word '{target_word}' not found."
|
344 |
-
concordance_txt = [
|
345 |
-
text.tokens[max(0, offset - left_margin):offset + right_margin]
|
346 |
-
for offset in offsets[:numLins]
|
347 |
-
]
|
348 |
-
result = [' '.join(con_sub) for con_sub in concordance_txt]
|
349 |
-
return '\n'.join(result) # Use newline for better readability in textbox
|
350 |
-
|
351 |
-
|
352 |
-
def get_contextual_search_result(target_word, tar_passage, groq_client_instance, max_context_length=8000):
|
353 |
-
"""
|
354 |
-
Uses the LLM to provide contextual information about the target word within the passage.
|
355 |
-
"""
|
356 |
-
if not target_word or target_word.strip() == "":
|
357 |
-
return "Please enter a search term."
|
358 |
-
|
359 |
-
if not groq_client_instance:
|
360 |
-
return "Contextual search requires the LLM API. Please set up your GROQ_API_KEY."
|
361 |
-
|
362 |
-
# Basic check if word exists (optional, LLM can handle it too)
|
363 |
-
# Simple check, might generate false positives/negatives
|
364 |
-
# if target_word.lower() not in tar_passage.lower():
|
365 |
-
# return f"The term '{target_word}' was not found in the manifesto text."
|
366 |
-
|
367 |
-
# Truncate passage if too long for the model/context window
|
368 |
-
original_length = len(tar_passage)
|
369 |
-
if original_length > max_context_length:
|
370 |
-
# Simple truncation; could be improved to ensure sentences are complete
|
371 |
-
tar_passage_truncated = tar_passage[:max_context_length]
|
372 |
-
print(f"Warning: Passage truncated for LLM search context from {original_length} to {max_context_length} characters.")
|
373 |
-
else:
|
374 |
-
tar_passage_truncated = tar_passage
|
375 |
-
|
376 |
-
# --- Improved Prompt ---
|
377 |
-
prompt = f"""
|
378 |
-
You are an expert political analyst. You have been given a section of a political manifesto and a specific search term.
|
379 |
-
Your task is to extract and summarize all information related to the search term from the provided text.
|
380 |
-
Focus on:
|
381 |
-
1. Specific policies, promises, or statements related to the term.
|
382 |
-
2. The context in which the term is used.
|
383 |
-
3. Any key details, figures, or commitments mentioned.
|
384 |
-
Present your findings concisely. If the term is not relevant or not found in the provided text section, state that clearly.
|
385 |
-
Search Term: {target_word}
|
386 |
-
Manifesto Text Section:
|
387 |
-
{tar_passage_truncated}
|
388 |
-
Relevant Information:
|
389 |
-
"""
|
390 |
-
|
391 |
-
try:
|
392 |
-
completion = groq_client_instance.chat.completions.create(
|
393 |
-
model="llama3-8b-8192", # Use the same or a suitable model
|
394 |
-
messages=[
|
395 |
-
{"role": "system", "content": "You are a helpful assistant skilled at analyzing political texts and extracting relevant information based on a search query. Provide clear, concise summaries."},
|
396 |
-
{"role": "user", "content": prompt}
|
397 |
-
],
|
398 |
-
temperature=0.2, # Low temperature for more factual extraction
|
399 |
-
max_tokens=1000 # Adjust based on expected output length
|
400 |
-
)
|
401 |
-
result = completion.choices[0].message.content.strip()
|
402 |
-
# Add a note if the input was truncated
|
403 |
-
if original_length > max_context_length:
|
404 |
-
result = f"(Note: Analysis based on the first {max_context_length} characters of the manifesto.)\n\n" + result
|
405 |
-
return result if result else f"No specific context for '{target_word}' could be generated from the provided text section."
|
406 |
-
except Exception as e:
|
407 |
-
error_msg = f"Error during contextual search for '{target_word}': {str(e)}"
|
408 |
-
print(error_msg)
|
409 |
-
traceback.print_exc()
|
410 |
-
# Fallback to concordance if LLM fails?
|
411 |
-
# return get_all_phases_containing_tar_wrd(target_word, tar_passage)
|
412 |
-
return error_msg # Or return the error message directly
|
413 |
-
|
414 |
-
|
415 |
def analysis(Manifesto, Search):
|
416 |
try:
|
417 |
if Manifesto is None:
|
418 |
-
# Ensure return order matches the outputs list
|
419 |
return "No file uploaded", {}, None, None, None, None, None, "No file uploaded"
|
420 |
if Search.strip() == "":
|
421 |
Search = "government"
|
422 |
-
raw_party = Parsing(Manifesto)
|
423 |
if isinstance(raw_party, str) and raw_party.startswith("Error"):
|
424 |
return raw_party, {}, None, None, None, None, None, "Parsing failed"
|
425 |
text_Party = clean_text(raw_party)
|
426 |
text_Party_processed = Preprocess(text_Party)
|
427 |
|
428 |
# --- Perform Search FIRST using the ORIGINAL text for better context ---
|
429 |
-
#
|
430 |
searChRes = get_contextual_search_result(Search, raw_party, groq_client)
|
431 |
|
432 |
-
# --- Then proceed with other analyses ---
|
433 |
summary = generate_summary(raw_party) # Use raw_party for summary for more context?
|
434 |
|
435 |
# --- Sentiment Analysis ---
|
@@ -450,9 +419,10 @@ def analysis(Manifesto, Search):
|
|
450 |
sentiment_plot = safe_plot(lambda: df_dummy['Polarity_Label'].value_counts().plot(kind='bar', color="#FF9F45", title='Sentiment Analysis'))
|
451 |
subjectivity_plot = safe_plot(lambda: df_dummy['Subjectivity_Label'].value_counts().plot(kind='bar', color="#B667F1", title='Subjectivity Analysis'))
|
452 |
freq_plot = fDistancePlot(text_Party_processed)
|
453 |
-
dispersion_plot = DispersionPlot(text_Party_processed) #
|
454 |
-
wordcloud = word_cloud_generator(Manifesto, text_Party_processed) # Pass Manifesto object itself
|
455 |
fdist_Party = fDistance(text_Party_processed)
|
|
|
456 |
|
457 |
return searChRes, fdist_Party, sentiment_plot, subjectivity_plot, wordcloud, freq_plot, dispersion_plot, summary
|
458 |
|
@@ -463,8 +433,8 @@ def analysis(Manifesto, Search):
|
|
463 |
# Return error messages/images in the correct order
|
464 |
return error_msg, {}, None, None, None, None, None, "Analysis failed"
|
465 |
|
466 |
-
|
467 |
-
#
|
468 |
with gr.Blocks(title='Manifesto Analysis') as demo:
|
469 |
gr.Markdown("# Manifesto Analysis")
|
470 |
# Input Section
|
@@ -481,9 +451,8 @@ with gr.Blocks(title='Manifesto Analysis') as demo:
|
|
481 |
with gr.TabItem("Summary"):
|
482 |
summary_output = gr.Textbox(label='AI-Generated Summary', lines=10, interactive=False)
|
483 |
|
484 |
-
# --- Search Results Tab ---
|
485 |
with gr.TabItem("Search Results"):
|
486 |
-
# Use the specific output variable defined in the layout
|
487 |
search_output = gr.Textbox(label='Context Based Search Results', lines=15, interactive=False, max_lines=20) # Increased lines/max_lines
|
488 |
|
489 |
# --- Key Topics Tab ---
|
@@ -515,7 +484,7 @@ with gr.Blocks(title='Manifesto Analysis') as demo:
|
|
515 |
fn=analysis,
|
516 |
inputs=[file_input, search_input],
|
517 |
outputs=[
|
518 |
-
search_output, # 1 (Now contextual)
|
519 |
topics_output, # 2
|
520 |
sentiment_output, # 3
|
521 |
subjectivity_output, # 4
|
@@ -528,7 +497,6 @@ with gr.Blocks(title='Manifesto Analysis') as demo:
|
|
528 |
)
|
529 |
|
530 |
# --- Examples ---
|
531 |
-
# Ensure outputs list references the PREDEFINED components from the layout
|
532 |
gr.Examples(
|
533 |
examples=[
|
534 |
["Example/AAP_Manifesto_2019.pdf", "government"],
|
@@ -536,11 +504,10 @@ with gr.Blocks(title='Manifesto Analysis') as demo:
|
|
536 |
["Example/Congress_Manifesto_2019.pdf", "safety"]
|
537 |
],
|
538 |
inputs=[file_input, search_input],
|
539 |
-
|
540 |
-
outputs=[search_output, topics_output, sentiment_output, subjectivity_output, wordcloud_output, freq_output, dispersion_output, summary_output],
|
541 |
fn=analysis # Run analysis on example click
|
542 |
)
|
543 |
|
544 |
-
|
545 |
if __name__ == "__main__":
|
546 |
-
demo.launch(debug=True, share=False, show_error=True)
|
|
|
3 |
import nltk
|
4 |
from nltk.tokenize import word_tokenize, sent_tokenize
|
5 |
from nltk.corpus import stopwords
|
6 |
+
# from nltk.stem import WordNetLemmatizer # Not used, commented out
|
7 |
from nltk.text import Text
|
8 |
from nltk.probability import FreqDist
|
9 |
from cleantext import clean
|
10 |
+
# import textract # Replaced by PyPDF2
|
11 |
+
import PyPDF2 # Added for PDF parsing
|
12 |
import urllib.request
|
13 |
from io import BytesIO
|
14 |
import sys
|
15 |
import pandas as pd
|
16 |
+
# import cv2 # Not used, commented out
|
17 |
import re
|
18 |
+
from wordcloud import WordCloud # , ImageColorGenerator # ImageColorGenerator not used, commented out
|
19 |
from textblob import TextBlob
|
20 |
from PIL import Image
|
21 |
import os
|
|
|
29 |
import contractions
|
30 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
31 |
|
32 |
+
# Load environment variables
|
33 |
load_dotenv()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# Download NLTK resources (Ensure this runs once or handle caching)
|
36 |
# nltk.download(['stopwords', 'wordnet', 'words'])
|
37 |
# nltk.download('punkt')
|
38 |
# nltk.download('punkt_tab')
|
39 |
+
|
40 |
# Initialize Groq client
|
41 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
42 |
groq_client = groq.Groq(api_key=groq_api_key) if groq_api_key else None
|
|
|
46 |
stop_words.update({'ask', 'much', 'thank', 'etc.', 'e', 'We', 'In', 'ed', 'pa', 'This', 'also', 'A', 'fu', 'To', '5', 'ing', 'er', '2'}) # Ensure stop_words is a set
|
47 |
|
48 |
# --- Parsing & Preprocessing Functions ---
|
49 |
+
# --- Replaced textract with PyPDF2 ---
|
50 |
def Parsing(parsed_text):
|
51 |
+
"""
|
52 |
+
Parses text from a PDF file using PyPDF2.
|
53 |
+
"""
|
54 |
try:
|
55 |
+
# Get the file path from the Gradio UploadFile object
|
56 |
if hasattr(parsed_text, 'name'):
|
57 |
file_path = parsed_text.name
|
58 |
else:
|
59 |
+
# Fallback if it's somehow just a string path
|
60 |
file_path = parsed_text
|
61 |
+
|
62 |
+
# Use PyPDF2 to read the PDF
|
63 |
+
text = ""
|
64 |
+
with open(file_path, 'rb') as pdf_file: # Open in binary read mode
|
65 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
66 |
+
for page_num in range(len(pdf_reader.pages)):
|
67 |
+
page = pdf_reader.pages[page_num]
|
68 |
+
text += page.extract_text() + "\n" # Add newline between pages
|
69 |
+
|
70 |
+
# Clean the extracted text
|
71 |
+
return clean(text)
|
72 |
+
|
73 |
+
except FileNotFoundError:
|
74 |
+
print(f"Error parsing PDF: File not found at path: {file_path}")
|
75 |
+
return f"Error parsing PDF: File not found. Please check the file upload."
|
76 |
+
except PyPDF2.errors.PdfReadError as pre:
|
77 |
+
print(f"Error reading PDF: {pre}")
|
78 |
+
return f"Error reading PDF: The file might be corrupted or password-protected."
|
79 |
except Exception as e:
|
80 |
print(f"Error parsing PDF: {e}")
|
81 |
return f"Error parsing PDF: {e}"
|
|
|
102 |
def generate_summary(text):
|
103 |
if not groq_client:
|
104 |
return "Summarization is not available. Please set up your GROQ_API_KEY in the .env file."
|
105 |
+
# Adjusted truncation length for potentially better summary context
|
106 |
+
if len(text) > 15000:
|
107 |
+
text = text[:15000]
|
108 |
try:
|
109 |
completion = groq_client.chat.completions.create(
|
110 |
model="llama3-8b-8192", # Or your preferred model
|
|
|
119 |
except Exception as e:
|
120 |
return f"Error generating summary: {str(e)}"
|
121 |
|
122 |
+
# --- New LLM-based Search Function ---
|
123 |
+
def get_contextual_search_result(target_word, tar_passage, groq_client_instance, max_context_length=8000):
|
124 |
+
"""
|
125 |
+
Uses the LLM to provide contextual information about the target word within the passage.
|
126 |
+
"""
|
127 |
+
if not target_word or target_word.strip() == "":
|
128 |
+
return "Please enter a search term."
|
129 |
+
|
130 |
+
if not groq_client_instance:
|
131 |
+
return "Contextual search requires the LLM API. Please set up your GROQ_API_KEY."
|
132 |
+
|
133 |
+
# Truncate passage if too long for the model/context window
|
134 |
+
original_length = len(tar_passage)
|
135 |
+
if original_length > max_context_length:
|
136 |
+
tar_passage_truncated = tar_passage[:max_context_length]
|
137 |
+
print(f"Warning: Passage truncated for LLM search context from {original_length} to {max_context_length} characters.")
|
138 |
+
else:
|
139 |
+
tar_passage_truncated = tar_passage
|
140 |
+
|
141 |
+
# --- Improved Prompt ---
|
142 |
+
prompt = f"""
|
143 |
+
You are an expert political analyst. You have been given a section of a political manifesto and a specific search term.
|
144 |
+
Your task is to extract and summarize all information related to the search term from the provided text.
|
145 |
+
Focus on:
|
146 |
+
1. Specific policies, promises, or statements related to the term.
|
147 |
+
2. The context in which the term is used.
|
148 |
+
3. Any key details, figures, or commitments mentioned.
|
149 |
+
Present your findings concisely. If the term is not relevant or not found in the provided text section, state that clearly.
|
150 |
+
Search Term: {target_word}
|
151 |
+
Manifesto Text Section:
|
152 |
+
{tar_passage_truncated}
|
153 |
+
Relevant Information:
|
154 |
+
"""
|
155 |
+
|
156 |
+
try:
|
157 |
+
completion = groq_client_instance.chat.completions.create(
|
158 |
+
model="llama3-8b-8192", # Use the same or a suitable model
|
159 |
+
messages=[
|
160 |
+
{"role": "system", "content": "You are a helpful assistant skilled at analyzing political texts and extracting relevant information based on a search query. Provide clear, concise summaries."},
|
161 |
+
{"role": "user", "content": prompt}
|
162 |
+
],
|
163 |
+
temperature=0.2, # Low temperature for more factual extraction
|
164 |
+
max_tokens=1000 # Adjust based on expected output length
|
165 |
+
)
|
166 |
+
result = completion.choices[0].message.content.strip()
|
167 |
+
# Add a note if the input was truncated
|
168 |
+
if original_length > max_context_length:
|
169 |
+
result = f"(Note: Analysis based on the first {max_context_length} characters of the manifesto.)\n\n" + result
|
170 |
+
return result if result else f"No specific context for '{target_word}' could be generated from the provided text section."
|
171 |
+
except Exception as e:
|
172 |
+
error_msg = f"Error during contextual search for '{target_word}': {str(e)}"
|
173 |
+
print(error_msg)
|
174 |
+
traceback.print_exc()
|
175 |
+
return error_msg # Or return the error message directly
|
176 |
+
|
177 |
def fDistance(text2Party):
|
178 |
word_tokens_party = word_tokenize(text2Party)
|
179 |
fdistance = FreqDist(word_tokens_party).most_common(10)
|
|
|
216 |
return {key: value * factor for key, value in d.items()}
|
217 |
|
218 |
# --- Visualization Functions with Error Handling ---
|
219 |
+
# --- Improved safe_plot to handle apply_aspect errors ---
|
220 |
def safe_plot(func, *args, **kwargs):
|
221 |
"""Executes a plotting function and returns the image, handling errors."""
|
222 |
buf = None # Initialize buffer
|
|
|
249 |
plt.close('all') # Aggressive close on error
|
250 |
return None
|
251 |
|
|
|
|
|
252 |
def fDistancePlot(text2Party):
|
|
|
253 |
def plot_func():
|
254 |
tokens = word_tokenize(text2Party)
|
255 |
if not tokens:
|
256 |
+
plt.text(0.5, 0.5, "No data to plot", ha='center', va='center')
|
257 |
+
return
|
258 |
fdist = FreqDist(tokens)
|
259 |
fdist.plot(15, title='Frequency Distribution')
|
260 |
+
plt.xticks(rotation=45, ha='right') # Rotate x-axis labels if needed
|
261 |
plt.tight_layout()
|
262 |
return safe_plot(plot_func)
|
263 |
|
264 |
+
# --- Updated DispersionPlot without passing 'ax' ---
|
265 |
def DispersionPlot(textParty):
|
266 |
"""Generates the word dispersion plot."""
|
267 |
buf = None # Initialize buffer
|
|
|
284 |
print("Warning: No common words found for dispersion plot.")
|
285 |
return None
|
286 |
|
287 |
+
# --- Manage figure explicitly without passing 'ax' ---
|
288 |
fig = plt.figure(figsize=(10, 5)) # Create figure explicitly
|
289 |
plt.title('Dispersion Plot')
|
290 |
# Call dispersion_plot without 'ax' argument
|
|
|
316 |
plt.close('all') # Aggressive close on error
|
317 |
return None # Return None on error
|
318 |
|
319 |
+
# --- Updated word_cloud_generator with robust figure handling ---
|
320 |
def word_cloud_generator(parsed_text_name, text_Party):
|
321 |
"""Generates the word cloud image."""
|
322 |
buf = None # Initialize buffer
|
323 |
try:
|
324 |
+
# Handle case where parsed_text_name might not have .name
|
325 |
filename_lower = ""
|
326 |
if hasattr(parsed_text_name, 'name') and parsed_text_name.name:
|
327 |
filename_lower = parsed_text_name.name.lower()
|
328 |
elif isinstance(parsed_text_name, str):
|
329 |
+
filename_lower = parsed_text_name.lower()
|
330 |
|
331 |
mask_path = None
|
332 |
if 'bjp' in filename_lower:
|
|
|
336 |
elif 'aap' in filename_lower:
|
337 |
mask_path = 'aapMain2.jpg'
|
338 |
|
339 |
+
# Generate word cloud
|
340 |
if text_Party.strip() == "":
|
341 |
+
raise ValueError("Text for word cloud is empty")
|
342 |
|
343 |
# Generate word cloud object
|
344 |
if mask_path and os.path.exists(mask_path):
|
345 |
orgImg = Image.open(mask_path)
|
346 |
+
# Ensure mask is in the right format (e.g., uint8)
|
347 |
if orgImg.mode != 'RGB':
|
348 |
orgImg = orgImg.convert('RGB')
|
349 |
mask = np.array(orgImg)
|
350 |
+
wordcloud = WordCloud(max_words=3000, mask=mask, background_color='white', mode='RGBA').generate(text_Party) # Added mode='RGBA'
|
351 |
else:
|
352 |
wordcloud = WordCloud(max_words=2000, background_color='white', mode='RGBA').generate(text_Party)
|
353 |
|
|
|
360 |
buf = BytesIO()
|
361 |
# Handle potential apply_aspect error for word cloud too
|
362 |
try:
|
363 |
+
fig.savefig(buf, format='png', bbox_inches='tight', dpi=150, facecolor='white') # Added dpi and facecolor
|
364 |
except AttributeError as ae:
|
365 |
if "apply_aspect" in str(ae):
|
366 |
print(f"Warning: bbox_inches='tight' failed for Word Cloud ({ae}), saving without it.")
|
367 |
buf.seek(0)
|
368 |
buf = BytesIO()
|
369 |
+
fig.savefig(buf, format='png', dpi=150, facecolor='white')
|
370 |
else:
|
371 |
raise
|
372 |
buf.seek(0)
|
|
|
382 |
plt.close('all') # Aggressive close on error
|
383 |
return None # Return None on error
|
384 |
|
385 |
+
# --- Main Analysis Function ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
def analysis(Manifesto, Search):
|
387 |
try:
|
388 |
if Manifesto is None:
|
|
|
389 |
return "No file uploaded", {}, None, None, None, None, None, "No file uploaded"
|
390 |
if Search.strip() == "":
|
391 |
Search = "government"
|
392 |
+
raw_party = Parsing(Manifesto) # Uses PyPDF2 now
|
393 |
if isinstance(raw_party, str) and raw_party.startswith("Error"):
|
394 |
return raw_party, {}, None, None, None, None, None, "Parsing failed"
|
395 |
text_Party = clean_text(raw_party)
|
396 |
text_Party_processed = Preprocess(text_Party)
|
397 |
|
398 |
# --- Perform Search FIRST using the ORIGINAL text for better context ---
|
399 |
+
# Use the new LLM-based search function
|
400 |
searChRes = get_contextual_search_result(Search, raw_party, groq_client)
|
401 |
|
|
|
402 |
summary = generate_summary(raw_party) # Use raw_party for summary for more context?
|
403 |
|
404 |
# --- Sentiment Analysis ---
|
|
|
419 |
sentiment_plot = safe_plot(lambda: df_dummy['Polarity_Label'].value_counts().plot(kind='bar', color="#FF9F45", title='Sentiment Analysis'))
|
420 |
subjectivity_plot = safe_plot(lambda: df_dummy['Subjectivity_Label'].value_counts().plot(kind='bar', color="#B667F1", title='Subjectivity Analysis'))
|
421 |
freq_plot = fDistancePlot(text_Party_processed)
|
422 |
+
dispersion_plot = DispersionPlot(text_Party_processed) # Uses updated version
|
423 |
+
wordcloud = word_cloud_generator(Manifesto, text_Party_processed) # Pass Manifesto object itself, uses updated version
|
424 |
fdist_Party = fDistance(text_Party_processed)
|
425 |
+
# searChRes is now generated earlier using LLM
|
426 |
|
427 |
return searChRes, fdist_Party, sentiment_plot, subjectivity_plot, wordcloud, freq_plot, dispersion_plot, summary
|
428 |
|
|
|
433 |
# Return error messages/images in the correct order
|
434 |
return error_msg, {}, None, None, None, None, None, "Analysis failed"
|
435 |
|
436 |
+
# --- Gradio Interface ---
|
437 |
+
# Use Blocks for custom layout
|
438 |
with gr.Blocks(title='Manifesto Analysis') as demo:
|
439 |
gr.Markdown("# Manifesto Analysis")
|
440 |
# Input Section
|
|
|
451 |
with gr.TabItem("Summary"):
|
452 |
summary_output = gr.Textbox(label='AI-Generated Summary', lines=10, interactive=False)
|
453 |
|
454 |
+
# --- Search Results Tab (uses LLM output now) ---
|
455 |
with gr.TabItem("Search Results"):
|
|
|
456 |
search_output = gr.Textbox(label='Context Based Search Results', lines=15, interactive=False, max_lines=20) # Increased lines/max_lines
|
457 |
|
458 |
# --- Key Topics Tab ---
|
|
|
484 |
fn=analysis,
|
485 |
inputs=[file_input, search_input],
|
486 |
outputs=[
|
487 |
+
search_output, # 1 (Now contextual LLM output)
|
488 |
topics_output, # 2
|
489 |
sentiment_output, # 3
|
490 |
subjectivity_output, # 4
|
|
|
497 |
)
|
498 |
|
499 |
# --- Examples ---
|
|
|
500 |
gr.Examples(
|
501 |
examples=[
|
502 |
["Example/AAP_Manifesto_2019.pdf", "government"],
|
|
|
504 |
["Example/Congress_Manifesto_2019.pdf", "safety"]
|
505 |
],
|
506 |
inputs=[file_input, search_input],
|
507 |
+
outputs=[search_output, topics_output, sentiment_output, subjectivity_output, wordcloud_output, freq_output, dispersion_output, summary_output], # Link examples to outputs
|
|
|
508 |
fn=analysis # Run analysis on example click
|
509 |
)
|
510 |
|
511 |
+
# Launch the app
|
512 |
if __name__ == "__main__":
|
513 |
+
demo.launch(debug=True, share=False, show_error=True)
|