Spaces:
Saad0KH
/
Running on Zero

File size: 18,981 Bytes
004975c
848b0e8
 
004975c
848b0e8
ede3a31
fb8a8c6
5cda59f
004975c
 
735d726
004975c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
848b0e8
 
 
004975c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb7b596
f0876aa
 
 
 
 
 
 
 
eb7b596
f0876aa
 
 
 
 
 
 
 
 
eb7b596
6153abe
004975c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c761dc5
004975c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee0f367
5cda59f
ee0f367
004975c
 
848b0e8
004975c
b610ea9
a24960d
b610ea9
004975c
 
 
 
 
 
 
 
a24960d
004975c
 
 
 
 
4320284
 
004975c
 
a22a3ef
 
004975c
848b0e8
f0876aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb7b596
 
5cda59f
 
 
f0876aa
5cda59f
 
 
 
 
f0876aa
5cda59f
 
 
 
 
f0876aa
5cda59f
 
 
 
 
 
 
 
 
 
 
f0876aa
5cda59f
 
 
 
 
 
 
f0876aa
 
 
 
 
 
 
5cda59f
 
f0876aa
85e57bc
848b0e8
004975c
848b0e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import os
from flask import Flask, request, jsonify
from PIL import Image
from io import BytesIO
import torch
import base64
import io 
import logging
import gradio as gr
import numpy as np
import spaces
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
    CLIPImageProcessor,
    CLIPVisionModelWithProjection,
    CLIPTextModel,
    CLIPTextModelWithProjection,
    AutoTokenizer,
)
from diffusers import DDPMScheduler, AutoencoderKL
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
from torchvision.transforms.functional import to_pil_image

app = Flask(__name__)

base_path = 'yisol/IDM-VTON'
example_path = os.path.join(os.path.dirname(__file__), 'example')

unet = UNet2DConditionModel.from_pretrained(
    base_path,
    subfolder="unet",
    torch_dtype=torch.float16,
)
unet.requires_grad_(False)
tokenizer_one = AutoTokenizer.from_pretrained(
    base_path,
    subfolder="tokenizer",
    revision=None,
    use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
    base_path,
    subfolder="tokenizer_2",
    revision=None,
    use_fast=False,
)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")

text_encoder_one = CLIPTextModel.from_pretrained(
    base_path,
    subfolder="text_encoder",
    torch_dtype=torch.float16,
)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
    base_path,
    subfolder="text_encoder_2",
    torch_dtype=torch.float16,
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
    base_path,
    subfolder="image_encoder",
    torch_dtype=torch.float16,
)
vae = AutoencoderKL.from_pretrained(base_path,
                                    subfolder="vae",
                                    torch_dtype=torch.float16,
)

UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
    base_path,
    subfolder="unet_encoder",
    torch_dtype=torch.float16,
)

parsing_model = Parsing(0)
openpose_model = OpenPose(0)

UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
tensor_transfrom = transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
    )

pipe = TryonPipeline.from_pretrained(
        base_path,
        unet=unet,
        vae=vae,
        feature_extractor= CLIPImageProcessor(),
        text_encoder = text_encoder_one,
        text_encoder_2 = text_encoder_two,
        tokenizer = tokenizer_one,
        tokenizer_2 = tokenizer_two,
        scheduler = noise_scheduler,
        image_encoder=image_encoder,
        torch_dtype=torch.float16,
)
pipe.unet_encoder = UNet_Encoder

def pil_to_binary_mask(pil_image, threshold=0):
    np_image = np.array(pil_image)
    grayscale_image = Image.fromarray(np_image).convert("L")
    binary_mask = np.array(grayscale_image) > threshold
    mask = np.zeros(binary_mask.shape, dtype=np.uint8)
    for i in range(binary_mask.shape[0]):
        for j in range(binary_mask.shape[1]):
            if binary_mask[i, j]:
                mask[i, j] = 1
    mask = (mask * 255).astype(np.uint8)
    output_mask = Image.fromarray(mask)
    return output_mask


def decode_image_from_base64(base64_str):
    try:
        img_data = base64.b64decode(base64_str)
        img = Image.open(BytesIO(img_data))
        return img
    except Exception as e:
        logging.error(f"Error decoding image: {e}")
        raise

def encode_image_to_base64(img):
    try:
        buffered = BytesIO()
        img.save(buffered, format="PNG")
        img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
        return img_str
    except Exception as e:
        logging.error(f"Error encoding image: {e}")
        raise

@spaces.GPU
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed):
    device = "cuda"
    openpose_model.preprocessor.body_estimation.model.to(device)
    pipe.to(device)
    pipe.unet_encoder.to(device)

    garm_img = garm_img.convert("RGB").resize((768, 1024))
    human_img_orig = dict["background"].convert("RGB")

    if is_checked_crop:
        width, height = human_img_orig.size
        target_width = int(min(width, height * (3 / 4)))
        target_height = int(min(height, width * (4 / 3)))
        left = (width - target_width) / 2
        top = (height - target_height) / 2
        right = (width + target_width) / 2
        bottom = (height + target_height) / 2
        cropped_img = human_img_orig.crop((left, top, right, bottom))
        crop_size = cropped_img.size
        human_img = cropped_img.resize((768, 1024))
    else:
        human_img = human_img_orig.resize((768, 1024))

    if is_checked:
        keypoints = openpose_model(human_img.resize((384, 512)))
        model_parse, _ = parsing_model(human_img.resize((384, 512)))
        mask, mask_gray = get_mask_location('hd', "full_body", model_parse, keypoints)
        mask = mask.resize((768, 1024))
    else:
        mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
    mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
    mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)

    human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
    human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")

    args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
    pose_img = args.func(args, human_img_arg)
    pose_img = pose_img[:, :, ::-1]
    pose_img = Image.fromarray(pose_img).resize((768, 1024))

    with torch.no_grad():
        with torch.cuda.amp.autocast():
            prompt = "model is wearing " + garment_des
            negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
            with torch.inference_mode():
                (
                    prompt_embeds,
                    negative_prompt_embeds,
                    pooled_prompt_embeds,
                    negative_pooled_prompt_embeds,
                ) = pipe.encode_prompt(
                    prompt,
                    num_images_per_prompt=1,
                    do_classifier_free_guidance=True,
                    negative_prompt=negative_prompt,
                )

                prompt = "a photo of " + garment_des
                negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
                if not isinstance(prompt, list):
                    prompt = [prompt] * 1
                if not isinstance(negative_prompt, list):
                    negative_prompt = [negative_prompt] * 1
                with torch.inference_mode():
                    (
                        prompt_embeds_c,
                        _,
                        _,
                        _,
                    ) = pipe.encode_prompt(
                        prompt,
                        num_images_per_prompt=1,
                        do_classifier_free_guidance=False,
                        negative_prompt=negative_prompt,
                    )

                pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16)
                garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16)
                generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
                images = pipe(
                    prompt_embeds=prompt_embeds.to(device, torch.float16),
                    negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
                    pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
                    negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
                    num_inference_steps=denoise_steps,
                    generator=generator,
                    strength=1.0,
                    pose_img=pose_img.to(device, torch.float16),
                    text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
                    cloth=garm_tensor.to(device, torch.float16),
                    mask_image=mask,
                    image=human_img,
                    height=1024,
                    width=768,
                    ip_adapter_image=garm_img.resize((768, 1024)),
                    guidance_scale=2.0,
                )[0]

    if is_checked_crop:
        out_img = images[0].resize(crop_size)
        human_img_orig.paste(out_img, (int(left), int(top)))
        return human_img_orig, mask_gray
    else:
        return images[0], mask_gray




@app.route('/tryon', methods=['POST'])
def tryon():
    data = request.json

    human_image = decode_image_from_base64(data['human_image'])
    mask_image = decode_image_from_base64(data['mask_image'])
    garment_image = decode_image_from_base64(data['garment_image'])
    description = data.get('description')
    use_auto_mask = data.get('use_auto_mask', True)
    use_auto_crop = data.get('use_auto_crop', False)
    denoise_steps = int(data.get('denoise_steps', 30))
    seed = int(data.get('seed', 42))

    human_dict = {
        'background': human_image,
        'layers': [mask_image] if not use_auto_mask else None,
        'composite': None
    }

    output_image, mask_image = start_tryon(human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed)

    output_base64 = encode_image_to_base64(output_image)
    mask_base64 = encode_image_to_base64(mask_image)

    return jsonify({
        'output_image': output_base64,
        'mask_image': mask_base64
    })


def combine_images_with_masks(tops_image, bottoms_image, mask, is_checked_crop, crop_size):
    try:
        # Logique de combinaison des images de haut et de bas
        if is_checked_crop:
            tops_image = tops_image.resize(crop_size)
            bottoms_image = bottoms_image.resize(crop_size)
            combined_image = Image.new('RGB', (tops_image.width, tops_image.height))
            combined_image.paste(tops_image, (0, 0))
            combined_image.paste(bottoms_image, (0, tops_image.height // 2))
        else:
            combined_image = Image.new('RGB', (tops_image.width, tops_image.height))
            combined_image.paste(tops_image, (0, 0))
            combined_image.paste(bottoms_image, (0, tops_image.height // 2))

        return combined_image

    except Exception as e:
        raise ValueError(f"Error combining images with masks: {e}")

@spaces.GPU
def start_tryon_full_body(tops_image, bottoms_image, model_parse_tops, model_parse_bottoms, is_checked, is_checked_crop, denoise_steps, seed):
    try:
        device = "cuda" if torch.cuda.is_available() else "cpu"
        openpose_model.preprocessor.body_estimation.model.to(device)
        pipe.to(device)
        pipe.unet_encoder.to(device)

        # Traitement de l'image de haut (tops)
        tops_image = tops_image.convert("RGB").resize((768, 1024))
        human_img_orig = tops_image  # Utiliser l'image de haut comme arrière-plan

        if is_checked_crop:
            width, height = human_img_orig.size
            target_width = int(min(width, height * (3 / 4)))
            target_height = int(min(height, width * (4 / 3)))
            left = (width - target_width) / 2
            top = (height - target_height) / 2
            right = (width + target_width) / 2
            bottom = (height + target_height) / 2
            cropped_img = human_img_orig.crop((left, top, right, bottom))
            crop_size = cropped_img.size
            human_img = cropped_img.resize((768, 1024))
        else:
            human_img = human_img_orig.resize((768, 1024))

        if is_checked:
            keypoints = openpose_model(human_img.resize((384, 512)))
            model_parse, _ = parsing_model(human_img.resize((384, 512)))
            mask, mask_gray = get_mask_location('hd', "full_body", model_parse, keypoints)
            mask = mask.resize((768, 1024))
        else:
            mask = pil_to_binary_mask(model_parse_tops.convert("RGB").resize((768, 1024)))
        mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
        mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)

        human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
        human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")

        args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
        pose_img = args.func(args, human_img_arg)
        pose_img = pose_img[:, :, ::-1]
        pose_img = Image.fromarray(pose_img).resize((768, 1024))

        # Traitement de l'image de bas (bottoms)
        bottoms_image = bottoms_image.convert("RGB").resize((768, 1024))
        bottoms_img_arg = _apply_exif_orientation(bottoms_image.resize((384, 512)))
        bottoms_img_arg = convert_PIL_to_numpy(bottoms_img_arg, format="BGR")

        # Combine les images de haut et de bas
        combined_image = combine_images_with_masks(tops_image, bottoms_image, mask, is_checked_crop, crop_size)

        with torch.no_grad():
            with torch.cuda.amp.autocast():
                prompt = "model is wearing " + garment_des
                negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
                with torch.inference_mode():
                    (
                        prompt_embeds,
                        negative_prompt_embeds,
                        pooled_prompt_embeds,
                        negative_pooled_prompt_embeds,
                    ) = pipe.encode_prompt(
                        prompt,
                        num_images_per_prompt=1,
                        do_classifier_free_guidance=True,
                        negative_prompt=negative_prompt,
                    )

                    prompt = "a photo of " + garment_des
                    negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
                    if not isinstance(prompt, list):
                        prompt = [prompt] * 1
                    if not isinstance(negative_prompt, list):
                        negative_prompt = [negative_prompt] * 1
                    with torch.inference_mode():
                        (
                            prompt_embeds_c,
                            _,
                            _,
                            _,
                        ) = pipe.encode_prompt(
                            prompt,
                            num_images_per_prompt=1,
                            do_classifier_free_guidance=False,
                            negative_prompt=negative_prompt,
                        )

                    pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16)
                    garm_tensor = tensor_transfrom(combined_image).unsqueeze(0).to(device, torch.float16)
                    generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
                    images = pipe(
                        prompt_embeds=prompt_embeds.to(device, torch.float16),
                        negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
                        pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
                        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
                        num_inference_steps=denoise_steps,
                        generator=generator,
                        strength=1.0,
                        pose_img=pose_img.to(device, torch.float16),
                        text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
                        cloth=garm_tensor.to(device, torch.float16),
                        mask_image=mask,
                        image=human_img,
                        height=1024,
                        width=768,
                        ip_adapter_image=combined_image.resize((768, 1024)),
                        guidance_scale=2.0,
                    )[0]

        if is_checked_crop:
            out_img = images[0].resize(crop_size)
            human_img_orig.paste(out_img, (int(left), int(top)))
            return human_img_orig, mask_gray
        else:
            return images[0], mask_gray

    except Exception as e:
        raise ValueError(f"Error in start_tryon_full_body: {e}")




@app.route('/tryon-full', methods=['POST'])
def tryon_full():
    try:
        data = request.json

        # Décoder les images
        tops_image = decode_image_from_base64(data['tops_image'])
        bottoms_image = decode_image_from_base64(data['bottoms_image'])
        model_parse_tops = decode_image_from_base64(data['model_parse_tops'])
        model_parse_bottoms = decode_image_from_base64(data['model_parse_bottoms'])

        # Récupérer les paramètres supplémentaires
        is_checked = data.get('use_auto_mask', True)
        is_checked_crop = data.get('use_auto_crop', False)
        denoise_steps = int(data.get('denoise_steps', 30))
        seed = int(data.get('seed', 42))

        # Appeler la fonction principale
        output_image, mask_image = start_tryon_full_body(
            tops_image,
            bottoms_image,
            model_parse_tops,
            model_parse_bottoms,
            is_checked,
            is_checked_crop,
            denoise_steps,
            seed
        )

        # Convertir les images en base64
        output_base64 = encode_image_to_base64(output_image)
        mask_base64 = encode_image_to_base64(mask_image)

        return jsonify({
            'output_image': output_base64,
            'mask_image': mask_base64
        })

    except KeyError as e:
        logging.error(f"KeyError in /tryon-full: {e}")
        return jsonify({'error': f"KeyError: {str(e)}"}), 400
    except ValueError as e:
        logging.error(f"ValueError in /tryon-full: {e}")
        return jsonify({'error': f"ValueError: {str(e)}"}), 400
    except Exception as e:
        logging.error(f"Error in /tryon-full: {e}")
        return jsonify({'error': f"Internal server error: {str(e)}"}), 500

if __name__ == "__main__":
    app.run(debug=True, host="0.0.0.0", port=7860)