IDM-VTON / app.py
Saad0KH's picture
Update app.py
83d675a verified
raw
history blame
10.4 kB
import os
from flask import Flask, request, jsonify
from PIL import Image
from io import BytesIO
import base64
import torch
import requests
import numpy as np
import uuid
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPTextModel,
CLIPTextModelWithProjection,
AutoTokenizer
)
from diffusers import DDPMScheduler, AutoencoderKL
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
from torchvision.transforms.functional import to_pil_image
app = Flask(__name__)
# Variables globales pour stocker les modèles
models_loaded = False
def load_models():
global unet, tokenizer_one, tokenizer_two, noise_scheduler, text_encoder_one, text_encoder_two
global image_encoder, vae, UNet_Encoder, parsing_model, openpose_model, pipe
if not models_loaded:
base_path = 'yisol/IDM-VTON'
unet = UNet2DConditionModel.from_pretrained(base_path, subfolder="unet", torch_dtype=torch.float16, force_download=False)
unet.requires_grad_(False)
tokenizer_one = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer", use_fast=False, force_download=False)
tokenizer_two = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer_2", use_fast=False, force_download=False)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16, force_download=False)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16, force_download=False)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16, force_download=False)
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16, force_download=False)
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16, force_download=False)
parsing_model = Parsing(0)
openpose_model = OpenPose(0)
UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
tensor_transfrom = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])
pipe = TryonPipeline.from_pretrained(
base_path,
unet=unet,
vae=vae,
feature_extractor=CLIPImageProcessor(),
text_encoder=text_encoder_one,
text_encoder_2=text_encoder_two,
tokenizer=tokenizer_one,
tokenizer_2=tokenizer_two,
scheduler=noise_scheduler,
image_encoder=image_encoder,
torch_dtype=torch.float16,
force_download=False
)
pipe.unet_encoder = UNet_Encoder
global models_loaded
models_loaded = True
def pil_to_binary_mask(pil_image, threshold=0):
np_image = np.array(pil_image.convert("L")) # Convert to grayscale directly
binary_mask = np_image > threshold
mask = np.uint8(binary_mask * 255)
return Image.fromarray(mask)
def get_image_from_url(url):
try:
response = requests.get(url)
response.raise_for_status()
return Image.open(BytesIO(response.content))
except Exception as e:
logging.error(f"Error fetching image from URL: {e}")
raise
def decode_image_from_base64(base64_str):
try:
img_data = base64.b64decode(base64_str)
return Image.open(BytesIO(img_data))
except Exception as e:
logging.error(f"Error decoding image: {e}")
raise
def encode_image_to_base64(img):
try:
buffered = BytesIO()
img.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
except Exception as e:
logging.error(f"Error encoding image: {e}")
raise
def save_image(img):
unique_name = f"{uuid.uuid4()}.webp"
img.save(unique_name, format="WEBP", lossless=True)
return unique_name
def clear_gpu_memory():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
@spaces.GPU
def start_tryon(human_dict, garment_image, garment_description, use_auto_mask, use_auto_crop, denoise_steps, seed, category='upper_body'):
device = "cuda"
openpose_model.preprocessor.body_estimation.model.to(device)
pipe.to(device)
pipe.unet_encoder.to(device)
garment_image = garment_image.convert("RGB").resize((768, 1024))
human_image_orig = human_dict["background"].convert("RGB")
if use_auto_crop:
width, height = human_image_orig.size
target_width = int(min(width, height * (3 / 4)))
target_height = int(min(height, width * (4 / 3)))
left, top = (width - target_width) / 2, (height - target_height) / 2
right, bottom = (width + target_width) / 2, (height + target_height) / 2
cropped_img = human_image_orig.crop((left, top, right, bottom)).resize((768, 1024))
else:
cropped_img = human_image_orig.resize((768, 1024))
if use_auto_mask:
keypoints = openpose_model(cropped_img.resize((384, 512)))
model_parse, _ = parsing_model(cropped_img.resize((384, 512)))
mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints)
mask = mask.resize((768, 1024))
else:
mask = pil_to_binary_mask(human_dict['layers'][0].convert("RGB").resize((768, 1024)))
mask_gray = (1 - transforms.ToTensor()(mask)) * transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])(cropped_img)
mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
human_image_arg = _apply_exif_orientation(cropped_img.resize((384, 512)))
human_image_arg = convert_PIL_to_numpy(human_image_arg, format="BGR")
args = apply_net.create_argument_parser().parse_args(
('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
pose_image = args.func(args, human_image_arg)
pose_image = Image.fromarray(pose_image[:, :, ::-1]).resize((768, 1024))
with torch.no_grad(), torch.cuda.amp.autocast():
prompt = "model is wearing " + garment_description
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = pipe.encode_prompt(
prompt, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=negative_prompt
)
prompt_c = "a photo of " + garment_description
negative_prompt_c = "monochrome, lowres, bad anatomy, worst quality, low quality"
prompt_embeds_c, _, _, _ = pipe.encode_prompt(
prompt_c, num_images_per_prompt=1, do_classifier_free_guidance=False, negative_prompt=negative_prompt_c
)
pose_image = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])(pose_image).unsqueeze(0).to(device, torch.float16)
garment_tensor = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])(garment_image).unsqueeze(0).to(device, torch.float16)
images = pipe(
prompt_embeds=prompt_embeds.to(device, torch.float16),
negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
pose_image=pose_image,
garment_image=garment_tensor,
mask_image=mask_gray.to(device, torch.float16),
generator=torch.Generator(device).manual_seed(seed),
num_inference_steps=denoise_steps
).images
if images:
output_image = images[0]
output_base64 = encode_image_to_base64(output_image)
mask_image = mask
mask_base64 = encode_image_to_base64(mask_image)
return output_image, mask_image
else:
raise ValueError("Failed to generate image")
# Route pour récupérer l'image générée
@app.route('/api/get_image/<image_id>', methods=['GET'])
def get_image(image_id):
# Construire le chemin complet de l'image
image_path = image_id # Assurez-vous que le nom de fichier correspond à celui que vous avez utilisé lors de la sauvegarde
# Renvoyer l'image
try:
return send_file(image_path, mimetype='image/webp')
except FileNotFoundError:
return jsonify({'error': 'Image not found'}), 404
@app.route('/tryon', methods=['POST'])
def tryon_handler():
try:
data = request.json
human_image = decode_image_from_base64(data['human_image'])
garment_image = decode_image_from_base64(data['garment_image'])
description = data.get('description')
use_auto_mask = data.get('use_auto_mask', True)
use_auto_crop = data.get('use_auto_crop', False)
denoise_steps = int(data.get('denoise_steps', 30))
seed = int(data.get('seed', 42))
category = data.get('category', 'upper_body')
human_dict = {
'background': human_image,
'layers': [human_image] if not use_auto_mask else None,
'composite': None
}
clear_gpu_memory()
output_image, mask_image = start_tryon(
human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed, category
)
output_base64 = encode_image_to_base64(output_image)
mask_base64 = encode_image_to_base64(mask_image)
return jsonify({
'output_image': output_base64,
'mask_image': mask_base64
})
except Exception as e:
logging.error(f"Error in tryon_handler: {e}")
return jsonify({'error': str(e)}), 500
if __name__ == "__main__":
load_models() # Charge les modèles au démarrage
app.run(host='0.0.0.0', port=7860)