Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import os
|
2 |
-
import requests
|
3 |
from flask import Flask, request, jsonify,send_file
|
4 |
from PIL import Image
|
5 |
from io import BytesIO
|
@@ -33,70 +32,107 @@ from torchvision.transforms.functional import to_pil_image
|
|
33 |
|
34 |
app = Flask(__name__)
|
35 |
|
36 |
-
# Chemins de base pour les modèles
|
37 |
base_path = 'yisol/IDM-VTON'
|
|
|
38 |
|
39 |
-
# Chargement des modèles
|
40 |
unet = UNet2DConditionModel.from_pretrained(
|
41 |
base_path,
|
42 |
subfolder="unet",
|
43 |
torch_dtype=torch.float16,
|
44 |
force_download=False
|
45 |
)
|
|
|
46 |
tokenizer_one = AutoTokenizer.from_pretrained(
|
47 |
base_path,
|
48 |
subfolder="tokenizer",
|
|
|
49 |
use_fast=False,
|
50 |
force_download=False
|
51 |
)
|
52 |
tokenizer_two = AutoTokenizer.from_pretrained(
|
53 |
base_path,
|
54 |
subfolder="tokenizer_2",
|
|
|
55 |
use_fast=False,
|
56 |
force_download=False
|
57 |
)
|
58 |
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
|
59 |
-
text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16)
|
60 |
-
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16)
|
61 |
-
image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16)
|
62 |
-
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16)
|
63 |
-
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16)
|
64 |
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
pipe = TryonPipeline.from_pretrained(
|
70 |
base_path,
|
71 |
-
|
72 |
-
vae=vae,
|
73 |
-
feature_extractor=CLIPImageProcessor(),
|
74 |
-
text_encoder=text_encoder_one,
|
75 |
-
text_encoder_2=text_encoder_two,
|
76 |
-
tokenizer=tokenizer_one,
|
77 |
-
tokenizer_2=tokenizer_two,
|
78 |
-
scheduler=noise_scheduler,
|
79 |
-
image_encoder=image_encoder,
|
80 |
torch_dtype=torch.float16,
|
81 |
force_download=False
|
82 |
)
|
83 |
-
pipe.unet_encoder = UNet_Encoder
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
def pil_to_binary_mask(pil_image, threshold=0):
|
92 |
np_image = np.array(pil_image)
|
93 |
grayscale_image = Image.fromarray(np_image).convert("L")
|
94 |
binary_mask = np.array(grayscale_image) > threshold
|
95 |
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
100 |
|
101 |
def get_image_from_url(url):
|
102 |
try:
|
@@ -121,7 +157,8 @@ def encode_image_to_base64(img):
|
|
121 |
try:
|
122 |
buffered = BytesIO()
|
123 |
img.save(buffered, format="PNG")
|
124 |
-
|
|
|
125 |
except Exception as e:
|
126 |
logging.error(f"Error encoding image: {e}")
|
127 |
raise
|
@@ -236,16 +273,17 @@ def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denois
|
|
236 |
human_img_orig.paste(out_img, (int(left), int(top)))
|
237 |
return human_img_orig, mask_gray
|
238 |
else:
|
239 |
-
return images[0], mask_gray
|
240 |
|
241 |
|
242 |
@app.route('/tryon-v2', methods=['POST'])
|
243 |
def tryon_v2():
|
244 |
|
245 |
-
|
246 |
human_image_data = data['human_image']
|
247 |
garment_image_data = data['garment_image']
|
248 |
|
|
|
249 |
human_image = process_image(human_image_data)
|
250 |
garment_image = process_image(garment_image_data)
|
251 |
|
@@ -256,34 +294,21 @@ def tryon_v2():
|
|
256 |
seed = int(data.get('seed', random.randint(0, 9999999)))
|
257 |
categorie = data.get('categorie', 'upper_body')
|
258 |
|
|
|
259 |
mask_image = None
|
260 |
if 'mask_image' in data:
|
261 |
mask_image_data = data['mask_image']
|
262 |
mask_image = process_image(mask_image_data)
|
263 |
-
|
264 |
human_dict = {
|
265 |
'background': human_image,
|
266 |
'layers': [mask_image] if not use_auto_mask else None,
|
267 |
'composite': None
|
268 |
}
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
output_image, mask_image, mask = start_tryon(human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed, categorie)
|
274 |
-
|
275 |
-
# Vider la mémoire GPU après traitement
|
276 |
-
clear_gpu_memory()
|
277 |
-
|
278 |
-
return jsonify({
|
279 |
-
'image_id': save_image(output_image),
|
280 |
-
'mask_gray_id': save_image(mask_image),
|
281 |
-
'mask_id': save_image(mask)
|
282 |
-
})
|
283 |
-
|
284 |
-
except Exception as e:
|
285 |
-
logging.error(f"Error during tryon process: {e}")
|
286 |
-
return jsonify({'error': 'An error occurred during tryon process.'}), 500
|
287 |
|
288 |
def clear_gpu_memory():
|
289 |
torch.cuda.empty_cache()
|
|
|
1 |
import os
|
|
|
2 |
from flask import Flask, request, jsonify,send_file
|
3 |
from PIL import Image
|
4 |
from io import BytesIO
|
|
|
32 |
|
33 |
app = Flask(__name__)
|
34 |
|
|
|
35 |
base_path = 'yisol/IDM-VTON'
|
36 |
+
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
37 |
|
|
|
38 |
unet = UNet2DConditionModel.from_pretrained(
|
39 |
base_path,
|
40 |
subfolder="unet",
|
41 |
torch_dtype=torch.float16,
|
42 |
force_download=False
|
43 |
)
|
44 |
+
unet.requires_grad_(False)
|
45 |
tokenizer_one = AutoTokenizer.from_pretrained(
|
46 |
base_path,
|
47 |
subfolder="tokenizer",
|
48 |
+
revision=None,
|
49 |
use_fast=False,
|
50 |
force_download=False
|
51 |
)
|
52 |
tokenizer_two = AutoTokenizer.from_pretrained(
|
53 |
base_path,
|
54 |
subfolder="tokenizer_2",
|
55 |
+
revision=None,
|
56 |
use_fast=False,
|
57 |
force_download=False
|
58 |
)
|
59 |
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
text_encoder_one = CLIPTextModel.from_pretrained(
|
62 |
+
base_path,
|
63 |
+
subfolder="text_encoder",
|
64 |
+
torch_dtype=torch.float16,
|
65 |
+
force_download=False
|
66 |
+
)
|
67 |
+
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
|
68 |
+
base_path,
|
69 |
+
subfolder="text_encoder_2",
|
70 |
+
torch_dtype=torch.float16,
|
71 |
+
force_download=False
|
72 |
+
)
|
73 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
74 |
+
base_path,
|
75 |
+
subfolder="image_encoder",
|
76 |
+
torch_dtype=torch.float16,
|
77 |
+
force_download=False
|
78 |
+
)
|
79 |
+
vae = AutoencoderKL.from_pretrained(base_path,
|
80 |
+
subfolder="vae",
|
81 |
+
torch_dtype=torch.float16,
|
82 |
+
force_download=False
|
83 |
+
)
|
84 |
|
85 |
+
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
|
|
|
86 |
base_path,
|
87 |
+
subfolder="unet_encoder",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
torch_dtype=torch.float16,
|
89 |
force_download=False
|
90 |
)
|
|
|
91 |
|
92 |
+
parsing_model = Parsing(0)
|
93 |
+
openpose_model = OpenPose(0)
|
94 |
+
|
95 |
+
UNet_Encoder.requires_grad_(False)
|
96 |
+
image_encoder.requires_grad_(False)
|
97 |
+
vae.requires_grad_(False)
|
98 |
+
unet.requires_grad_(False)
|
99 |
+
text_encoder_one.requires_grad_(False)
|
100 |
+
text_encoder_two.requires_grad_(False)
|
101 |
+
tensor_transfrom = transforms.Compose(
|
102 |
+
[
|
103 |
+
transforms.ToTensor(),
|
104 |
+
transforms.Normalize([0.5], [0.5]),
|
105 |
+
]
|
106 |
+
)
|
107 |
+
|
108 |
+
pipe = TryonPipeline.from_pretrained(
|
109 |
+
base_path,
|
110 |
+
unet=unet,
|
111 |
+
vae=vae,
|
112 |
+
feature_extractor= CLIPImageProcessor(),
|
113 |
+
text_encoder = text_encoder_one,
|
114 |
+
text_encoder_2 = text_encoder_two,
|
115 |
+
tokenizer = tokenizer_one,
|
116 |
+
tokenizer_2 = tokenizer_two,
|
117 |
+
scheduler = noise_scheduler,
|
118 |
+
image_encoder=image_encoder,
|
119 |
+
torch_dtype=torch.float16,
|
120 |
+
force_download=False
|
121 |
+
)
|
122 |
+
pipe.unet_encoder = UNet_Encoder
|
123 |
|
124 |
def pil_to_binary_mask(pil_image, threshold=0):
|
125 |
np_image = np.array(pil_image)
|
126 |
grayscale_image = Image.fromarray(np_image).convert("L")
|
127 |
binary_mask = np.array(grayscale_image) > threshold
|
128 |
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
|
129 |
+
for i in range(binary_mask.shape[0]):
|
130 |
+
for j in range(binary_mask.shape[1]):
|
131 |
+
if binary_mask[i, j]:
|
132 |
+
mask[i, j] = 1
|
133 |
+
mask = (mask * 255).astype(np.uint8)
|
134 |
+
output_mask = Image.fromarray(mask)
|
135 |
+
return output_mask
|
136 |
|
137 |
def get_image_from_url(url):
|
138 |
try:
|
|
|
157 |
try:
|
158 |
buffered = BytesIO()
|
159 |
img.save(buffered, format="PNG")
|
160 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
161 |
+
return img_str
|
162 |
except Exception as e:
|
163 |
logging.error(f"Error encoding image: {e}")
|
164 |
raise
|
|
|
273 |
human_img_orig.paste(out_img, (int(left), int(top)))
|
274 |
return human_img_orig, mask_gray
|
275 |
else:
|
276 |
+
return images[0], mask_gray
|
277 |
|
278 |
|
279 |
@app.route('/tryon-v2', methods=['POST'])
|
280 |
def tryon_v2():
|
281 |
|
282 |
+
data = request.json
|
283 |
human_image_data = data['human_image']
|
284 |
garment_image_data = data['garment_image']
|
285 |
|
286 |
+
# Process images (base64 ou URL)
|
287 |
human_image = process_image(human_image_data)
|
288 |
garment_image = process_image(garment_image_data)
|
289 |
|
|
|
294 |
seed = int(data.get('seed', random.randint(0, 9999999)))
|
295 |
categorie = data.get('categorie', 'upper_body')
|
296 |
|
297 |
+
# Vérifie si 'mask_image' est présent dans les données
|
298 |
mask_image = None
|
299 |
if 'mask_image' in data:
|
300 |
mask_image_data = data['mask_image']
|
301 |
mask_image = process_image(mask_image_data)
|
302 |
+
|
303 |
human_dict = {
|
304 |
'background': human_image,
|
305 |
'layers': [mask_image] if not use_auto_mask else None,
|
306 |
'composite': None
|
307 |
}
|
308 |
+
output_image, mask_image = start_tryon(human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed , categorie)
|
309 |
+
return jsonify({
|
310 |
+
'image_id': save_image(output_image)
|
311 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
|
313 |
def clear_gpu_memory():
|
314 |
torch.cuda.empty_cache()
|