Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import os
|
2 |
-
from flask import Flask, request, jsonify
|
3 |
from PIL import Image
|
4 |
from io import BytesIO
|
5 |
import torch
|
@@ -9,6 +9,8 @@ import logging
|
|
9 |
import gradio as gr
|
10 |
import numpy as np
|
11 |
import spaces
|
|
|
|
|
12 |
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
|
13 |
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
|
14 |
from src.unet_hacked_tryon import UNet2DConditionModel
|
@@ -123,6 +125,15 @@ def pil_to_binary_mask(pil_image, threshold=0):
|
|
123 |
output_mask = Image.fromarray(mask)
|
124 |
return output_mask
|
125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
def decode_image_from_base64(base64_str):
|
128 |
try:
|
@@ -143,6 +154,11 @@ def encode_image_to_base64(img):
|
|
143 |
logging.error(f"Error encoding image: {e}")
|
144 |
raise
|
145 |
|
|
|
|
|
|
|
|
|
|
|
146 |
@spaces.GPU
|
147 |
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, categorie = 'upper_body'):
|
148 |
device = "cuda"
|
@@ -255,11 +271,18 @@ def clear_gpu_memory():
|
|
255 |
torch.cuda.empty_cache()
|
256 |
torch.cuda.synchronize()
|
257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
@app.route('/tryon', methods=['POST'])
|
259 |
def tryon():
|
260 |
data = request.json
|
261 |
-
human_image =
|
262 |
-
garment_image =
|
263 |
description = data.get('description')
|
264 |
use_auto_mask = data.get('use_auto_mask', True)
|
265 |
use_auto_crop = data.get('use_auto_crop', False)
|
@@ -283,6 +306,32 @@ def tryon():
|
|
283 |
'mask_image': mask_base64
|
284 |
})
|
285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
@spaces.GPU
|
287 |
def generate_mask(human_img, categorie='upper_body'):
|
288 |
device = "cuda"
|
@@ -316,7 +365,7 @@ def generate_mask_api():
|
|
316 |
categorie = data.get('categorie', 'upper_body')
|
317 |
|
318 |
# Décodage de l'image à partir de base64
|
319 |
-
human_img =
|
320 |
|
321 |
# Appeler la fonction pour générer le masque
|
322 |
mask_resized = generate_mask(human_img, categorie)
|
@@ -331,6 +380,17 @@ def generate_mask_api():
|
|
331 |
logging.error(f"Error generating mask: {e}")
|
332 |
return jsonify({'error': str(e)}), 500
|
333 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
|
335 |
if __name__ == "__main__":
|
336 |
app.run(debug=True, host="0.0.0.0", port=7860)
|
|
|
1 |
import os
|
2 |
+
from flask import Flask, request, jsonify,send_file
|
3 |
from PIL import Image
|
4 |
from io import BytesIO
|
5 |
import torch
|
|
|
9 |
import gradio as gr
|
10 |
import numpy as np
|
11 |
import spaces
|
12 |
+
import uuid
|
13 |
+
import random
|
14 |
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
|
15 |
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
|
16 |
from src.unet_hacked_tryon import UNet2DConditionModel
|
|
|
125 |
output_mask = Image.fromarray(mask)
|
126 |
return output_mask
|
127 |
|
128 |
+
def get_image_from_url(url):
|
129 |
+
try:
|
130 |
+
response = requests.get(url)
|
131 |
+
response.raise_for_status() # Vérifie les erreurs HTTP
|
132 |
+
img = Image.open(BytesIO(response.content))
|
133 |
+
return img
|
134 |
+
except Exception as e:
|
135 |
+
logging.error(f"Error fetching image from URL: {e}")
|
136 |
+
raise
|
137 |
|
138 |
def decode_image_from_base64(base64_str):
|
139 |
try:
|
|
|
154 |
logging.error(f"Error encoding image: {e}")
|
155 |
raise
|
156 |
|
157 |
+
def save_image(img):
|
158 |
+
unique_name = str(uuid.uuid4()) + ".webp"
|
159 |
+
img.save(unique_name, format="WEBP", lossless=True)
|
160 |
+
return unique_name
|
161 |
+
|
162 |
@spaces.GPU
|
163 |
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, categorie = 'upper_body'):
|
164 |
device = "cuda"
|
|
|
271 |
torch.cuda.empty_cache()
|
272 |
torch.cuda.synchronize()
|
273 |
|
274 |
+
def process_image(image_data):
|
275 |
+
# Vérifie si l'image est en base64 ou URL
|
276 |
+
if image_data.startswith('http://') or image_data.startswith('https://'):
|
277 |
+
return get_image_from_url(image_data) # Télécharge l'image depuis l'URL
|
278 |
+
else:
|
279 |
+
return decode_image_from_base64(image_data) # Décode l'image base64
|
280 |
+
|
281 |
@app.route('/tryon', methods=['POST'])
|
282 |
def tryon():
|
283 |
data = request.json
|
284 |
+
human_image = process_image(data['human_image'])
|
285 |
+
garment_image = process_image(data['garment_image'])
|
286 |
description = data.get('description')
|
287 |
use_auto_mask = data.get('use_auto_mask', True)
|
288 |
use_auto_crop = data.get('use_auto_crop', False)
|
|
|
306 |
'mask_image': mask_base64
|
307 |
})
|
308 |
|
309 |
+
@app.route('/tryon-v2', methods=['POST'])
|
310 |
+
def tryon():
|
311 |
+
data = request.json
|
312 |
+
human_image = process_image(data['human_image'])
|
313 |
+
garment_image = process_image(data['garment_image'])
|
314 |
+
mask_image = process_image(data['mask_image'])
|
315 |
+
description = data.get('description')
|
316 |
+
use_auto_mask = data.get('use_auto_mask', True)
|
317 |
+
use_auto_crop = data.get('use_auto_crop', False)
|
318 |
+
denoise_steps = int(data.get('denoise_steps', 30))
|
319 |
+
seed = int(data.get('seed', random.randint(0, 9999999)))
|
320 |
+
categorie = data.get('categorie' , 'upper_body')
|
321 |
+
human_dict = {
|
322 |
+
'background': human_image,
|
323 |
+
'layers': [mask_image] if not use_auto_mask else None,
|
324 |
+
'composite': None
|
325 |
+
}
|
326 |
+
output_image, mask_image = start_tryon(human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed , categorie)
|
327 |
+
|
328 |
+
output_id =
|
329 |
+
mask_base64 = encode_image_to_base64(mask_image)
|
330 |
+
|
331 |
+
return jsonify({
|
332 |
+
'image_id': save_image(output_image)
|
333 |
+
})
|
334 |
+
|
335 |
@spaces.GPU
|
336 |
def generate_mask(human_img, categorie='upper_body'):
|
337 |
device = "cuda"
|
|
|
365 |
categorie = data.get('categorie', 'upper_body')
|
366 |
|
367 |
# Décodage de l'image à partir de base64
|
368 |
+
human_img = process_image(base64_image)
|
369 |
|
370 |
# Appeler la fonction pour générer le masque
|
371 |
mask_resized = generate_mask(human_img, categorie)
|
|
|
380 |
logging.error(f"Error generating mask: {e}")
|
381 |
return jsonify({'error': str(e)}), 500
|
382 |
|
383 |
+
# Route pour récupérer l'image générée
|
384 |
+
@app.route('/api/get_image/<image_id>', methods=['GET'])
|
385 |
+
def get_image(image_id):
|
386 |
+
# Construire le chemin complet de l'image
|
387 |
+
image_path = image_id # Assurez-vous que le nom de fichier correspond à celui que vous avez utilisé lors de la sauvegarde
|
388 |
+
|
389 |
+
# Renvoyer l'image
|
390 |
+
try:
|
391 |
+
return send_file(image_path, mimetype='image/webp')
|
392 |
+
except FileNotFoundError:
|
393 |
+
return jsonify({'error': 'Image not found'}), 404
|
394 |
|
395 |
if __name__ == "__main__":
|
396 |
app.run(debug=True, host="0.0.0.0", port=7860)
|