Spaces:
Saad0KH
/
Running on Zero

Saad0KH commited on
Commit
af7056a
ยท
verified ยท
1 Parent(s): 227771d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +66 -343
app.py CHANGED
@@ -1,43 +1,35 @@
1
-
2
- import os
3
- from flask import Flask, request, jsonify,send_file
4
- from PIL import Image
5
- from io import BytesIO
6
  import torch
7
- import base64
8
- import io
9
- import logging
10
- import gradio as gr
11
- import numpy as np
12
- import spaces
13
- import uuid
14
- import random
15
- from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
16
- from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
17
- from src.unet_hacked_tryon import UNet2DConditionModel
18
  from transformers import (
19
- CLIPImageProcessor,
20
- CLIPVisionModelWithProjection,
21
  CLIPTextModel,
22
  CLIPTextModelWithProjection,
23
- AutoTokenizer,
 
 
24
  )
25
- from diffusers import DDPMScheduler, AutoencoderKL
26
- from utils_mask import get_mask_location
27
- from torchvision import transforms
28
- import apply_net
29
- from preprocess.humanparsing.run_parsing import Parsing
30
- from preprocess.openpose.run_openpose import OpenPose
31
- from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
32
- from torchvision.transforms.functional import to_pil_image
33
 
34
  app = Flask(__name__)
35
 
36
- base_path = 'yisol/IDM-VTON'
37
- example_path = os.path.join(os.path.dirname(__file__), 'example')
38
-
 
 
 
 
 
 
 
 
 
39
  def load_models():
40
  global unet, tokenizer_one, tokenizer_two, noise_scheduler, text_encoder_one, text_encoder_two, image_encoder, vae, UNet_Encoder
 
41
  unet = UNet2DConditionModel.from_pretrained(base_path, subfolder="unet", torch_dtype=torch.float16, force_download=False)
42
  tokenizer_one = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer", use_fast=False, force_download=False)
43
  tokenizer_two = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer_2", use_fast=False, force_download=False)
@@ -48,328 +40,59 @@ def load_models():
48
  vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16, force_download=False)
49
  UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16, force_download=False)
50
 
 
51
  load_models()
52
 
53
- parsing_model = Parsing(0)
54
- openpose_model = OpenPose(0)
55
-
56
- UNet_Encoder.requires_grad_(False)
57
- image_encoder.requires_grad_(False)
58
- vae.requires_grad_(False)
59
- unet.requires_grad_(False)
60
- text_encoder_one.requires_grad_(False)
61
- text_encoder_two.requires_grad_(False)
62
- tensor_transfrom = transforms.Compose(
63
- [
64
- transforms.ToTensor(),
65
- transforms.Normalize([0.5], [0.5]),
66
- ]
67
- )
68
-
69
- pipe = TryonPipeline.from_pretrained(
70
- base_path,
71
- unet=unet,
72
- vae=vae,
73
- feature_extractor= CLIPImageProcessor(),
74
- text_encoder = text_encoder_one,
75
- text_encoder_2 = text_encoder_two,
76
- tokenizer = tokenizer_one,
77
- tokenizer_2 = tokenizer_two,
78
- scheduler = noise_scheduler,
79
- image_encoder=image_encoder,
80
- torch_dtype=torch.float16,
81
- force_download=False
82
- )
83
- pipe.unet_encoder = UNet_Encoder
84
-
85
- def pil_to_binary_mask(pil_image, threshold=0):
86
- np_image = np.array(pil_image)
87
- grayscale_image = Image.fromarray(np_image).convert("L")
88
- binary_mask = np.array(grayscale_image) > threshold
89
- mask = np.zeros(binary_mask.shape, dtype=np.uint8)
90
- for i in range(binary_mask.shape[0]):
91
- for j in range(binary_mask.shape[1]):
92
- if binary_mask[i, j]:
93
- mask[i, j] = 1
94
- mask = (mask * 255).astype(np.uint8)
95
- output_mask = Image.fromarray(mask)
96
- return output_mask
97
-
98
- def get_image_from_url(url):
99
- try:
100
- response = requests.get(url)
101
- response.raise_for_status() # Vรฉrifie les erreurs HTTP
102
- img = Image.open(BytesIO(response.content))
103
- return img
104
- except Exception as e:
105
- logging.error(f"Error fetching image from URL: {e}")
106
- raise
107
-
108
- def decode_image_from_base64(base64_str):
109
- try:
110
- img_data = base64.b64decode(base64_str)
111
- img = Image.open(BytesIO(img_data))
112
- return img
113
- except Exception as e:
114
- logging.error(f"Error decoding image: {e}")
115
- raise
116
-
117
- def encode_image_to_base64(img):
118
- try:
119
- buffered = BytesIO()
120
- img.save(buffered, format="PNG")
121
- img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
122
- return img_str
123
- except Exception as e:
124
- logging.error(f"Error encoding image: {e}")
125
- raise
126
-
127
- def save_image(img):
128
- unique_name = str(uuid.uuid4()) + ".webp"
129
- img.save(unique_name, format="WEBP", lossless=True)
130
- return unique_name
131
-
132
-
133
  def clear_gpu_memory():
134
  torch.cuda.empty_cache()
135
  torch.cuda.synchronize()
136
 
137
-
138
- @spaces.GPU
139
- def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, categorie = 'upper_body'):
140
- device = "cuda"
141
- openpose_model.preprocessor.body_estimation.model.to(device)
142
- pipe.to(device)
143
- pipe.unet_encoder.to(device)
144
-
145
- garm_img = garm_img.convert("RGB").resize((512, 768))
146
- human_img_orig = dict["background"].convert("RGB")
147
-
148
- if is_checked_crop:
149
- width, height = human_img_orig.size
150
- target_width = int(min(width, height * (3 / 4)))
151
- target_height = int(min(height, width * (4 / 3)))
152
- left = (width - target_width) / 2
153
- top = (height - target_height) / 2
154
- right = (width + target_width) / 2
155
- bottom = (height + target_height) / 2
156
- cropped_img = human_img_orig.crop((left, top, right, bottom))
157
- crop_size = cropped_img.size
158
- human_img = cropped_img.resize((512, 768))
159
- else:
160
- human_img = human_img_orig.resize((512, 768))
161
-
162
- if is_checked:
163
- keypoints = openpose_model(human_img.resize((384, 512)))
164
- model_parse, _ = parsing_model(human_img.resize((384, 512)))
165
- mask, mask_gray = get_mask_location('hd', categorie , model_parse, keypoints)
166
- mask = mask.resize((768, 1024))
167
- else:
168
- mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((512, 768)))
169
- mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
170
- mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
171
-
172
- human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
173
- human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
174
-
175
- args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
176
- pose_img = args.func(args, human_img_arg)
177
- pose_img = pose_img[:, :, ::-1]
178
- pose_img = Image.fromarray(pose_img).resize((512, 768))
179
-
180
- with torch.no_grad():
181
- with torch.cuda.amp.autocast():
182
- prompt = "model is wearing " + garment_des
183
- negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
184
- with torch.inference_mode():
185
- (
186
- prompt_embeds,
187
- negative_prompt_embeds,
188
- pooled_prompt_embeds,
189
- negative_pooled_prompt_embeds,
190
- ) = pipe.encode_prompt(
191
- prompt,
192
- num_images_per_prompt=1,
193
- do_classifier_free_guidance=True,
194
- negative_prompt=negative_prompt,
195
- )
196
-
197
- prompt = "a photo of " + garment_des
198
- negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
199
- if not isinstance(prompt, list):
200
- prompt = [prompt] * 1
201
- if not isinstance(negative_prompt, list):
202
- negative_prompt = [negative_prompt] * 1
203
- with torch.inference_mode():
204
- (
205
- prompt_embeds_c,
206
- _,
207
- _,
208
- _,
209
- ) = pipe.encode_prompt(
210
- prompt,
211
- num_images_per_prompt=1,
212
- do_classifier_free_guidance=False,
213
- negative_prompt=negative_prompt,
214
- )
215
-
216
- pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16)
217
- garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16)
218
- generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
219
- images = pipe(
220
- prompt_embeds=prompt_embeds.to(device, torch.float16),
221
- negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
222
- pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
223
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
224
- num_inference_steps=denoise_steps,
225
- generator=generator,
226
- strength=1.0,
227
- pose_img=pose_img.to(device, torch.float16),
228
- text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
229
- cloth=garm_tensor.to(device, torch.float16),
230
- mask_image=mask,
231
- image=human_img,
232
- height=1024,
233
- width=768,
234
- ip_adapter_image=garm_img.resize((512, 768)),
235
- guidance_scale=2.0,
236
- )[0]
237
- clear_gpu_memory()
238
- if is_checked_crop:
239
- out_img = images[0].resize(crop_size)
240
- human_img_orig.paste(out_img, (int(left), int(top)))
241
- return human_img_orig, mask_gray
242
- else:
243
- return images[0], mask_gray
244
-
245
-
246
- def process_image(image_data):
247
- # Vรฉrifie si l'image est en base64 ou URL
248
- if image_data.startswith('http://') or image_data.startswith('https://'):
249
- return get_image_from_url(image_data) # Tรฉlรฉcharge l'image depuis l'URL
250
- else:
251
- return decode_image_from_base64(image_data) # Dรฉcode l'image base64
252
-
253
- @app.route('/tryon', methods=['POST'])
254
- def tryon():
255
- data = request.json
256
- human_image = process_image(data['human_image'])
257
- garment_image = process_image(data['garment_image'])
258
- description = data.get('description')
259
- use_auto_mask = data.get('use_auto_mask', True)
260
- use_auto_crop = data.get('use_auto_crop', False)
261
- denoise_steps = int(data.get('denoise_steps', 30))
262
- seed = int(data.get('seed', 42))
263
- categorie = data.get('categorie' , 'upper_body')
264
- human_dict = {
265
- 'background': human_image,
266
- 'layers': [human_image] if not use_auto_mask else None,
267
- 'composite': None
268
- }
269
-
270
- output_image, mask_image = start_tryon(human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed , categorie)
271
-
272
- output_base64 = encode_image_to_base64(output_image)
273
- mask_base64 = encode_image_to_base64(mask_image)
274
-
275
- return jsonify({
276
- 'output_image': output_base64,
277
- 'mask_image': mask_base64
278
- })
279
-
280
- @app.route('/tryon-v2', methods=['POST'])
281
- def tryon_v2():
282
-
283
- data = request.json
284
- human_image_data = data['human_image']
285
- garment_image_data = data['garment_image']
286
-
287
- # Process images (base64 ou URL)
288
- human_image = process_image(human_image_data)
289
- garment_image = process_image(garment_image_data)
290
-
291
- description = data.get('description')
292
- use_auto_mask = data.get('use_auto_mask', True)
293
- use_auto_crop = data.get('use_auto_crop', False)
294
- denoise_steps = int(data.get('denoise_steps', 30))
295
- seed = int(data.get('seed', random.randint(0, 9999999)))
296
- categorie = data.get('categorie', 'upper_body')
297
-
298
- # Vรฉrifie si 'mask_image' est prรฉsent dans les donnรฉes
299
- mask_image = None
300
- if 'mask_image' in data:
301
- mask_image_data = data['mask_image']
302
- mask_image = process_image(mask_image_data)
303
 
304
- human_dict = {
305
- 'background': human_image,
306
- 'layers': [mask_image] if not use_auto_mask else None,
307
- 'composite': None
308
- }
309
- output_image, mask_image = start_tryon(human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed , categorie)
310
- return jsonify({
311
- 'image_id': save_image(output_image)
312
- })
313
-
314
- @spaces.GPU
315
- def generate_mask(human_img, categorie='upper_body'):
316
- device = "cuda"
317
- openpose_model.preprocessor.body_estimation.model.to(device)
318
- pipe.to(device)
319
 
 
 
 
 
320
  try:
321
- # Redimensionner l'image pour le modรจle
322
- human_img_resized = human_img.convert("RGB").resize((384, 512))
323
-
324
- # Gรฉnรฉrer les points clรฉs et le masque
325
- keypoints = openpose_model(human_img_resized)
326
- model_parse, _ = parsing_model(human_img_resized)
327
- mask, _ = get_mask_location('hd', categorie, model_parse, keypoints)
328
-
329
- # Redimensionner le masque ร  la taille d'origine de l'image
330
- mask_resized = mask.resize(human_img.size)
331
-
332
- return mask_resized
333
- except Exception as e:
334
- logging.error(f"Error generating mask: {e}")
335
- raise e
336
 
337
-
338
- @app.route('/generate_mask', methods=['POST'])
339
- def generate_mask_api():
340
- try:
341
- # Rรฉcupรฉrer les donnรฉes de l'image ร  partir de la requรชte
342
- data = request.json
343
- base64_image = data.get('human_image')
344
- categorie = data.get('categorie', 'upper_body')
345
-
346
- # Dรฉcodage de l'image ร  partir de base64
347
- human_img = process_image(base64_image)
348
-
349
- # Appeler la fonction pour gรฉnรฉrer le masque
350
- mask_resized = generate_mask(human_img, categorie)
351
-
352
- # Encodage du masque en base64 pour la rรฉponse
353
- mask_base64 = encode_image_to_base64(mask_resized)
354
-
355
- return jsonify({
356
- 'mask_image': mask_base64
357
- }), 200
358
  except Exception as e:
359
- logging.error(f"Error generating mask: {e}")
360
- return jsonify({'error': str(e)}), 500
361
-
362
- # Route pour rรฉcupรฉrer l'image gรฉnรฉrรฉe
363
- @app.route('/api/get_image/<image_id>', methods=['GET'])
364
- def get_image(image_id):
365
- # Construire le chemin complet de l'image
366
- image_path = image_id # Assurez-vous que le nom de fichier correspond ร  celui que vous avez utilisรฉ lors de la sauvegarde
367
-
368
- # Renvoyer l'image
369
- try:
370
- return send_file(image_path, mimetype='image/webp')
371
- except FileNotFoundError:
372
- return jsonify({'error': 'Image not found'}), 404
373
 
374
- if __name__ == "__main__":
375
- app.run(debug=False, host="0.0.0.0", port=7860)
 
1
+ from flask import Flask, request, jsonify
 
 
 
 
2
  import torch
 
 
 
 
 
 
 
 
 
 
 
3
  from transformers import (
4
+ UNet2DConditionModel,
5
+ AutoTokenizer,
6
  CLIPTextModel,
7
  CLIPTextModelWithProjection,
8
+ CLIPVisionModelWithProjection,
9
+ AutoencoderKL,
10
+ DDPMScheduler
11
  )
12
+ from PIL import Image
13
+ import base64
14
+ from io import BytesIO
 
 
 
 
 
15
 
16
  app = Flask(__name__)
17
 
18
+ # Global variables for models to load them once at startup
19
+ unet = None
20
+ tokenizer_one = None
21
+ tokenizer_two = None
22
+ noise_scheduler = None
23
+ text_encoder_one = None
24
+ text_encoder_two = None
25
+ image_encoder = None
26
+ vae = None
27
+ UNet_Encoder = None
28
+
29
+ # Load models once at startup
30
  def load_models():
31
  global unet, tokenizer_one, tokenizer_two, noise_scheduler, text_encoder_one, text_encoder_two, image_encoder, vae, UNet_Encoder
32
+ base_path = "your_base_path_here"
33
  unet = UNet2DConditionModel.from_pretrained(base_path, subfolder="unet", torch_dtype=torch.float16, force_download=False)
34
  tokenizer_one = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer", use_fast=False, force_download=False)
35
  tokenizer_two = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer_2", use_fast=False, force_download=False)
 
40
  vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16, force_download=False)
41
  UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16, force_download=False)
42
 
43
+ # Call the function to load models at startup
44
  load_models()
45
 
46
+ # Helper function to free up GPU memory after processing
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  def clear_gpu_memory():
48
  torch.cuda.empty_cache()
49
  torch.cuda.synchronize()
50
 
51
+ # Helper function to convert base64 to image
52
+ def base64_to_image(base64_str):
53
+ image_data = base64.b64decode(base64_str)
54
+ image = Image.open(BytesIO(image_data)).convert("RGB")
55
+ return image
56
+
57
+ # Helper function to resize images for faster processing
58
+ def resize_image(image, size=(512, 768)):
59
+ return image.resize(size)
60
+
61
+ # Example try-on function
62
+ @app.route('/start_tryon', methods=['POST'])
63
+ def start_tryon():
64
+ data = request.get_json()
65
+ garm_img_base64 = data['garm_img']
66
+ human_img_base64 = data['human_img']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
+ # Decode and resize images
69
+ garm_img = resize_image(base64_to_image(garm_img_base64))
70
+ human_img = resize_image(base64_to_image(human_img_base64))
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
+ # Convert images to tensors and move to GPU
73
+ garm_img_tensor = torch.tensor(garm_img, dtype=torch.float16).unsqueeze(0).to('cuda')
74
+ human_img_tensor = torch.tensor(human_img, dtype=torch.float16).unsqueeze(0).to('cuda')
75
+
76
  try:
77
+ # Processing steps (dummy example, replace with your logic)
78
+ with torch.inference_mode():
79
+ # Run the inference for both images
80
+ result_tensor = unet(garm_img_tensor, human_img_tensor) # Replace with your actual logic
81
+
82
+ # Free GPU memory after inference
83
+ clear_gpu_memory()
84
+
85
+ # Convert result back to base64 for return
86
+ result_img = Image.fromarray(result_tensor.squeeze(0).cpu().numpy())
87
+ buffered = BytesIO()
88
+ result_img.save(buffered, format="JPEG")
89
+ result_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
 
 
90
 
91
+ return jsonify({"result": result_base64})
92
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
  except Exception as e:
94
+ clear_gpu_memory()
95
+ return jsonify({"error": str(e)}), 500
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
+ if __name__ == '__main__':
98
+ app.run(host='0.0.0.0', port=7860)