Spaces:
Saad0KH
/
Running on Zero

Saad0KH commited on
Commit
bbabb76
·
verified ·
1 Parent(s): 16ea5ee

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +257 -97
app.py CHANGED
@@ -1,9 +1,10 @@
1
  import os
2
- from flask import Flask, request, jsonify, send_file
3
  from PIL import Image
4
  from io import BytesIO
5
  import torch
6
  import base64
 
7
  import logging
8
  import gradio as gr
9
  import numpy as np
@@ -23,34 +24,24 @@ from transformers import (
23
  from diffusers import DDPMScheduler, AutoencoderKL
24
  from utils_mask import get_mask_location
25
  from torchvision import transforms
26
- from torch.quantization import quantize_dynamic, default_dynamic_qconfig
27
- from torch.nn.utils import prune
 
 
 
28
 
29
  app = Flask(__name__)
30
 
31
  base_path = 'yisol/IDM-VTON'
32
  example_path = os.path.join(os.path.dirname(__file__), 'example')
33
 
34
- # Modèles avec quantization
35
  unet = UNet2DConditionModel.from_pretrained(
36
  base_path,
37
  subfolder="unet",
38
  torch_dtype=torch.float16,
39
  force_download=False
40
  )
41
-
42
- # Quantization dynamique des modèles pour une meilleure efficacité
43
- unet = quantize_dynamic(unet, {torch.nn.Linear}, dtype=torch.qint8)
44
-
45
  unet.requires_grad_(False)
46
-
47
- # Application de pruning pour réduire les poids inutiles
48
- for name, module in unet.named_modules():
49
- if isinstance(module, torch.nn.Conv2d):
50
- # Convertir les poids en float32 pour éviter les erreurs liées à topk et pruning
51
- module.float() # Convertir le module en float32 avant pruning
52
- prune.l1_unstructured(module, name='weight', amount=0.2)
53
-
54
  tokenizer_one = AutoTokenizer.from_pretrained(
55
  base_path,
56
  subfolder="tokenizer",
@@ -79,17 +70,12 @@ text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
79
  torch_dtype=torch.float16,
80
  force_download=False
81
  )
82
-
83
- # Autres modèles avec quantization
84
  image_encoder = CLIPVisionModelWithProjection.from_pretrained(
85
  base_path,
86
  subfolder="image_encoder",
87
  torch_dtype=torch.float16,
88
  force_download=False
89
  )
90
-
91
- image_encoder = quantize_dynamic(image_encoder, {torch.nn.Linear}, dtype=torch.qint8)
92
-
93
  vae = AutoencoderKL.from_pretrained(base_path,
94
  subfolder="vae",
95
  torch_dtype=torch.float16,
@@ -103,46 +89,66 @@ UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
103
  force_download=False
104
  )
105
 
106
- # Désactivation de la mise à jour des poids
 
 
107
  UNet_Encoder.requires_grad_(False)
108
  image_encoder.requires_grad_(False)
109
  vae.requires_grad_(False)
110
  unet.requires_grad_(False)
111
  text_encoder_one.requires_grad_(False)
112
  text_encoder_two.requires_grad_(False)
 
 
 
 
 
 
113
 
114
- # Pipeline Tryon
115
  pipe = TryonPipeline.from_pretrained(
116
  base_path,
117
  unet=unet,
118
  vae=vae,
119
- feature_extractor=CLIPImageProcessor(),
120
- text_encoder=text_encoder_one,
121
- text_encoder_2=text_encoder_two,
122
- tokenizer=tokenizer_one,
123
- tokenizer_2=tokenizer_two,
124
- scheduler=noise_scheduler,
125
  image_encoder=image_encoder,
126
  torch_dtype=torch.float16,
127
  force_download=False
128
  )
129
  pipe.unet_encoder = UNet_Encoder
130
 
131
- tensor_transfrom = transforms.Compose([
132
- transforms.ToTensor(),
133
- transforms.Normalize([0.5], [0.5])
134
- ])
135
-
136
- # Fonctions utilitaires optimisées
137
  def pil_to_binary_mask(pil_image, threshold=0):
138
- # Utilisation des opérations vectorisées pour améliorer les performances
139
- grayscale_image = np.array(pil_image.convert("L")) > threshold
140
- mask = (grayscale_image.astype(np.uint8) * 255)
141
- return Image.fromarray(mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
 
143
  def decode_image_from_base64(base64_str):
144
  try:
145
- return Image.open(BytesIO(base64.b64decode(base64_str)))
 
 
146
  except Exception as e:
147
  logging.error(f"Error decoding image: {e}")
148
  raise
@@ -151,74 +157,136 @@ def encode_image_to_base64(img):
151
  try:
152
  buffered = BytesIO()
153
  img.save(buffered, format="PNG")
154
- return base64.b64encode(buffered.getvalue()).decode("utf-8")
 
155
  except Exception as e:
156
  logging.error(f"Error encoding image: {e}")
157
  raise
158
 
159
  def save_image(img):
160
- unique_name = str(uuid.uuid4()) + ".webp"
161
- img.save(unique_name, format="WEBP", lossless=True)
162
  return unique_name
163
 
164
- # Optimisations du traitement de l'image avec GPU
165
  @spaces.GPU
166
- def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, categorie='upper_body'):
167
  device = "cuda"
 
168
  pipe.to(device)
169
- garm_img = garm_img.convert("RGB").resize((768, 1024))
170
 
 
171
  human_img_orig = dict["background"].convert("RGB")
172
- human_img = human_img_orig.resize((768, 1024))
 
 
 
 
 
 
 
 
 
 
 
 
 
173
 
174
  if is_checked:
175
  keypoints = openpose_model(human_img.resize((384, 512)))
176
  model_parse, _ = parsing_model(human_img.resize((384, 512)))
177
- mask, mask_gray = get_mask_location('hd', categorie, model_parse, keypoints)
178
  mask = mask.resize((768, 1024))
179
  else:
180
  mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
 
 
 
 
 
 
 
 
 
 
181
 
182
  with torch.no_grad():
183
  with torch.cuda.amp.autocast():
184
  prompt = "model is wearing " + garment_des
185
  negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186
 
187
- # Encodage des prompts
188
- prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = pipe.encode_prompt(
189
- prompt,
190
- num_images_per_prompt=1,
191
- do_classifier_free_guidance=True,
192
- negative_prompt=negative_prompt
193
- )
194
-
195
- pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16)
196
- garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16)
197
-
198
- generator = torch.Generator(device).manual_seed(seed) if seed else None
199
- images = pipe(
200
- prompt_embeds=prompt_embeds,
201
- negative_prompt_embeds=negative_prompt_embeds,
202
- pooled_prompt_embeds=pooled_prompt_embeds,
203
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
204
- num_inference_steps=denoise_steps,
205
- generator=generator,
206
- strength=1.0,
207
- pose_img=pose_img,
208
- cloth=garm_tensor,
209
- mask_image=mask,
210
- image=human_img,
211
- height=1024,
212
- width=768
213
- )[0]
214
-
215
- return images[0], mask_gray
216
-
217
- # Suppression explicite des caches GPU pour libérer la mémoire
218
  def clear_gpu_memory():
219
  torch.cuda.empty_cache()
220
  torch.cuda.synchronize()
221
 
 
 
 
 
 
 
 
222
  @app.route('/tryon', methods=['POST'])
223
  def tryon():
224
  data = request.json
@@ -226,27 +294,119 @@ def tryon():
226
  garment_image = process_image(data['garment_image'])
227
  description = data.get('description')
228
  use_auto_mask = data.get('use_auto_mask', True)
 
229
  denoise_steps = int(data.get('denoise_steps', 30))
230
- seed = int(data.get('seed', random.randint(0, 10000)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231
 
232
  try:
233
- generated_image, _ = start_tryon(
234
- human_image,
235
- garment_image,
236
- description,
237
- use_auto_mask,
238
- False,
239
- denoise_steps,
240
- seed
241
- )
242
- image_name = save_image(generated_image)
243
- clear_gpu_memory()
 
 
 
 
244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245
  return jsonify({
246
- 'generated_image': image_name
247
- })
248
-
249
  except Exception as e:
250
- logging.error(f"Error during try-on: {e}")
251
- clear_gpu_memory()
252
- return jsonify({'error': 'Try-on failed.'}), 500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ from flask import Flask, request, jsonify,send_file
3
  from PIL import Image
4
  from io import BytesIO
5
  import torch
6
  import base64
7
+ import io
8
  import logging
9
  import gradio as gr
10
  import numpy as np
 
24
  from diffusers import DDPMScheduler, AutoencoderKL
25
  from utils_mask import get_mask_location
26
  from torchvision import transforms
27
+ import apply_net
28
+ from preprocess.humanparsing.run_parsing import Parsing
29
+ from preprocess.openpose.run_openpose import OpenPose
30
+ from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
31
+ from torchvision.transforms.functional import to_pil_image
32
 
33
  app = Flask(__name__)
34
 
35
  base_path = 'yisol/IDM-VTON'
36
  example_path = os.path.join(os.path.dirname(__file__), 'example')
37
 
 
38
  unet = UNet2DConditionModel.from_pretrained(
39
  base_path,
40
  subfolder="unet",
41
  torch_dtype=torch.float16,
42
  force_download=False
43
  )
 
 
 
 
44
  unet.requires_grad_(False)
 
 
 
 
 
 
 
 
45
  tokenizer_one = AutoTokenizer.from_pretrained(
46
  base_path,
47
  subfolder="tokenizer",
 
70
  torch_dtype=torch.float16,
71
  force_download=False
72
  )
 
 
73
  image_encoder = CLIPVisionModelWithProjection.from_pretrained(
74
  base_path,
75
  subfolder="image_encoder",
76
  torch_dtype=torch.float16,
77
  force_download=False
78
  )
 
 
 
79
  vae = AutoencoderKL.from_pretrained(base_path,
80
  subfolder="vae",
81
  torch_dtype=torch.float16,
 
89
  force_download=False
90
  )
91
 
92
+ parsing_model = Parsing(0)
93
+ openpose_model = OpenPose(0)
94
+
95
  UNet_Encoder.requires_grad_(False)
96
  image_encoder.requires_grad_(False)
97
  vae.requires_grad_(False)
98
  unet.requires_grad_(False)
99
  text_encoder_one.requires_grad_(False)
100
  text_encoder_two.requires_grad_(False)
101
+ tensor_transfrom = transforms.Compose(
102
+ [
103
+ transforms.ToTensor(),
104
+ transforms.Normalize([0.5], [0.5]),
105
+ ]
106
+ )
107
 
 
108
  pipe = TryonPipeline.from_pretrained(
109
  base_path,
110
  unet=unet,
111
  vae=vae,
112
+ feature_extractor= CLIPImageProcessor(),
113
+ text_encoder = text_encoder_one,
114
+ text_encoder_2 = text_encoder_two,
115
+ tokenizer = tokenizer_one,
116
+ tokenizer_2 = tokenizer_two,
117
+ scheduler = noise_scheduler,
118
  image_encoder=image_encoder,
119
  torch_dtype=torch.float16,
120
  force_download=False
121
  )
122
  pipe.unet_encoder = UNet_Encoder
123
 
 
 
 
 
 
 
124
  def pil_to_binary_mask(pil_image, threshold=0):
125
+ np_image = np.array(pil_image)
126
+ grayscale_image = Image.fromarray(np_image).convert("L")
127
+ binary_mask = np.array(grayscale_image) > threshold
128
+ mask = np.zeros(binary_mask.shape, dtype=np.uint8)
129
+ for i in range(binary_mask.shape[0]):
130
+ for j in range(binary_mask.shape[1]):
131
+ if binary_mask[i, j]:
132
+ mask[i, j] = 1
133
+ mask = (mask * 255).astype(np.uint8)
134
+ output_mask = Image.fromarray(mask)
135
+ return output_mask
136
+
137
+ def get_image_from_url(url):
138
+ try:
139
+ response = requests.get(url)
140
+ response.raise_for_status() # Vérifie les erreurs HTTP
141
+ img = Image.open(BytesIO(response.content))
142
+ return img
143
+ except Exception as e:
144
+ logging.error(f"Error fetching image from URL: {e}")
145
+ raise
146
 
147
  def decode_image_from_base64(base64_str):
148
  try:
149
+ img_data = base64.b64decode(base64_str)
150
+ img = Image.open(BytesIO(img_data))
151
+ return img
152
  except Exception as e:
153
  logging.error(f"Error decoding image: {e}")
154
  raise
 
157
  try:
158
  buffered = BytesIO()
159
  img.save(buffered, format="PNG")
160
+ img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
161
+ return img_str
162
  except Exception as e:
163
  logging.error(f"Error encoding image: {e}")
164
  raise
165
 
166
  def save_image(img):
167
+ unique_name = str(uuid.uuid4()) + ".webp"
168
+ img.save(unique_name, format="WEBP", lossless=True)
169
  return unique_name
170
 
 
171
  @spaces.GPU
172
+ def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, categorie = 'upper_body'):
173
  device = "cuda"
174
+ openpose_model.preprocessor.body_estimation.model.to(device)
175
  pipe.to(device)
176
+ pipe.unet_encoder.to(device)
177
 
178
+ garm_img = garm_img.convert("RGB").resize((768, 1024))
179
  human_img_orig = dict["background"].convert("RGB")
180
+
181
+ if is_checked_crop:
182
+ width, height = human_img_orig.size
183
+ target_width = int(min(width, height * (3 / 4)))
184
+ target_height = int(min(height, width * (4 / 3)))
185
+ left = (width - target_width) / 2
186
+ top = (height - target_height) / 2
187
+ right = (width + target_width) / 2
188
+ bottom = (height + target_height) / 2
189
+ cropped_img = human_img_orig.crop((left, top, right, bottom))
190
+ crop_size = cropped_img.size
191
+ human_img = cropped_img.resize((768, 1024))
192
+ else:
193
+ human_img = human_img_orig.resize((768, 1024))
194
 
195
  if is_checked:
196
  keypoints = openpose_model(human_img.resize((384, 512)))
197
  model_parse, _ = parsing_model(human_img.resize((384, 512)))
198
+ mask, mask_gray = get_mask_location('hd', categorie , model_parse, keypoints)
199
  mask = mask.resize((768, 1024))
200
  else:
201
  mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
202
+ mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
203
+ mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
204
+
205
+ human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
206
+ human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
207
+
208
+ args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
209
+ pose_img = args.func(args, human_img_arg)
210
+ pose_img = pose_img[:, :, ::-1]
211
+ pose_img = Image.fromarray(pose_img).resize((768, 1024))
212
 
213
  with torch.no_grad():
214
  with torch.cuda.amp.autocast():
215
  prompt = "model is wearing " + garment_des
216
  negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
217
+ with torch.inference_mode():
218
+ (
219
+ prompt_embeds,
220
+ negative_prompt_embeds,
221
+ pooled_prompt_embeds,
222
+ negative_pooled_prompt_embeds,
223
+ ) = pipe.encode_prompt(
224
+ prompt,
225
+ num_images_per_prompt=1,
226
+ do_classifier_free_guidance=True,
227
+ negative_prompt=negative_prompt,
228
+ )
229
+
230
+ prompt = "a photo of " + garment_des
231
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
232
+ if not isinstance(prompt, list):
233
+ prompt = [prompt] * 1
234
+ if not isinstance(negative_prompt, list):
235
+ negative_prompt = [negative_prompt] * 1
236
+ with torch.inference_mode():
237
+ (
238
+ prompt_embeds_c,
239
+ _,
240
+ _,
241
+ _,
242
+ ) = pipe.encode_prompt(
243
+ prompt,
244
+ num_images_per_prompt=1,
245
+ do_classifier_free_guidance=False,
246
+ negative_prompt=negative_prompt,
247
+ )
248
+
249
+ pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16)
250
+ garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16)
251
+ generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
252
+ images = pipe(
253
+ prompt_embeds=prompt_embeds.to(device, torch.float16),
254
+ negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
255
+ pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
256
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
257
+ num_inference_steps=denoise_steps,
258
+ generator=generator,
259
+ strength=1.0,
260
+ pose_img=pose_img.to(device, torch.float16),
261
+ text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
262
+ cloth=garm_tensor.to(device, torch.float16),
263
+ mask_image=mask,
264
+ image=human_img,
265
+ height=1024,
266
+ width=768,
267
+ ip_adapter_image=garm_img.resize((768, 1024)),
268
+ guidance_scale=2.0,
269
+ )[0]
270
+
271
+ if is_checked_crop:
272
+ out_img = images[0].resize(crop_size)
273
+ human_img_orig.paste(out_img, (int(left), int(top)))
274
+ return human_img_orig, mask_gray
275
+ else:
276
+ return images[0], mask_gray
277
+
278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
279
  def clear_gpu_memory():
280
  torch.cuda.empty_cache()
281
  torch.cuda.synchronize()
282
 
283
+ def process_image(image_data):
284
+ # Vérifie si l'image est en base64 ou URL
285
+ if image_data.startswith('http://') or image_data.startswith('https://'):
286
+ return get_image_from_url(image_data) # Télécharge l'image depuis l'URL
287
+ else:
288
+ return decode_image_from_base64(image_data) # Décode l'image base64
289
+
290
  @app.route('/tryon', methods=['POST'])
291
  def tryon():
292
  data = request.json
 
294
  garment_image = process_image(data['garment_image'])
295
  description = data.get('description')
296
  use_auto_mask = data.get('use_auto_mask', True)
297
+ use_auto_crop = data.get('use_auto_crop', False)
298
  denoise_steps = int(data.get('denoise_steps', 30))
299
+ seed = int(data.get('seed', 42))
300
+ categorie = data.get('categorie' , 'upper_body')
301
+ human_dict = {
302
+ 'background': human_image,
303
+ 'layers': [human_image] if not use_auto_mask else None,
304
+ 'composite': None
305
+ }
306
+ #clear_gpu_memory()
307
+
308
+ output_image, mask_image = start_tryon(human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed , categorie)
309
+
310
+ output_base64 = encode_image_to_base64(output_image)
311
+ mask_base64 = encode_image_to_base64(mask_image)
312
+
313
+ return jsonify({
314
+ 'output_image': output_base64,
315
+ 'mask_image': mask_base64
316
+ })
317
+
318
+ @app.route('/tryon-v2', methods=['POST'])
319
+ def tryon_v2():
320
+
321
+ data = request.json
322
+ human_image_data = data['human_image']
323
+ garment_image_data = data['garment_image']
324
+
325
+ # Process images (base64 ou URL)
326
+ human_image = process_image(human_image_data)
327
+ garment_image = process_image(garment_image_data)
328
+
329
+ description = data.get('description')
330
+ use_auto_mask = data.get('use_auto_mask', True)
331
+ use_auto_crop = data.get('use_auto_crop', False)
332
+ denoise_steps = int(data.get('denoise_steps', 30))
333
+ seed = int(data.get('seed', random.randint(0, 9999999)))
334
+ categorie = data.get('categorie', 'upper_body')
335
+
336
+ # Vérifie si 'mask_image' est présent dans les données
337
+ mask_image = None
338
+ if 'mask_image' in data:
339
+ mask_image_data = data['mask_image']
340
+ mask_image = process_image(mask_image_data)
341
+
342
+ human_dict = {
343
+ 'background': human_image,
344
+ 'layers': [mask_image] if not use_auto_mask else None,
345
+ 'composite': None
346
+ }
347
+ output_image, mask_image = start_tryon(human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed , categorie)
348
+ return jsonify({
349
+ 'image_id': save_image(output_image)
350
+ })
351
+
352
+ @spaces.GPU
353
+ def generate_mask(human_img, categorie='upper_body'):
354
+ device = "cuda"
355
+ openpose_model.preprocessor.body_estimation.model.to(device)
356
+ pipe.to(device)
357
 
358
  try:
359
+ # Redimensionner l'image pour le modèle
360
+ human_img_resized = human_img.convert("RGB").resize((384, 512))
361
+
362
+ # Générer les points clés et le masque
363
+ keypoints = openpose_model(human_img_resized)
364
+ model_parse, _ = parsing_model(human_img_resized)
365
+ mask, _ = get_mask_location('hd', categorie, model_parse, keypoints)
366
+
367
+ # Redimensionner le masque à la taille d'origine de l'image
368
+ mask_resized = mask.resize(human_img.size)
369
+
370
+ return mask_resized
371
+ except Exception as e:
372
+ logging.error(f"Error generating mask: {e}")
373
+ raise e
374
 
375
+
376
+ @app.route('/generate_mask', methods=['POST'])
377
+ def generate_mask_api():
378
+ try:
379
+ # Récupérer les données de l'image à partir de la requête
380
+ data = request.json
381
+ base64_image = data.get('human_image')
382
+ categorie = data.get('categorie', 'upper_body')
383
+
384
+ # Décodage de l'image à partir de base64
385
+ human_img = process_image(base64_image)
386
+
387
+ # Appeler la fonction pour générer le masque
388
+ mask_resized = generate_mask(human_img, categorie)
389
+
390
+ # Encodage du masque en base64 pour la réponse
391
+ mask_base64 = encode_image_to_base64(mask_resized)
392
+
393
  return jsonify({
394
+ 'mask_image': mask_base64
395
+ }), 200
 
396
  except Exception as e:
397
+ logging.error(f"Error generating mask: {e}")
398
+ return jsonify({'error': str(e)}), 500
399
+
400
+ # Route pour récupérer l'image générée
401
+ @app.route('/api/get_image/<image_id>', methods=['GET'])
402
+ def get_image(image_id):
403
+ # Construire le chemin complet de l'image
404
+ image_path = image_id # Assurez-vous que le nom de fichier correspond à celui que vous avez utilisé lors de la sauvegarde
405
+
406
+ # Renvoyer l'image
407
+ try:
408
+ return send_file(image_path, mimetype='image/webp')
409
+ except FileNotFoundError:
410
+ return jsonify({'error': 'Image not found'}), 404
411
+
412
+ if __name__ == "__main__":