Update app.py
Browse files
app.py
CHANGED
|
@@ -9,17 +9,14 @@ import os
|
|
| 9 |
|
| 10 |
print("Installation complete. Loading models...")
|
| 11 |
|
| 12 |
-
# Load models once at startup
|
| 13 |
model_name = "csebuetnlp/mT5_multilingual_XLSum"
|
| 14 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
| 15 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 16 |
|
| 17 |
-
# If you have a GPU, use it
|
| 18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
print(f"Using device: {device}")
|
| 20 |
model = model.to(device)
|
| 21 |
|
| 22 |
-
# Load question generator once
|
| 23 |
question_generator = pipeline(
|
| 24 |
"text2text-generation",
|
| 25 |
model="valhalla/t5-small-e2e-qg",
|
|
@@ -43,9 +40,8 @@ def summarize_text(text, src_lang):
|
|
| 43 |
return summary
|
| 44 |
|
| 45 |
def generate_questions(summary):
|
| 46 |
-
# Generate questions one at a time with beam search
|
| 47 |
questions = []
|
| 48 |
-
for _ in range(3):
|
| 49 |
result = question_generator(
|
| 50 |
summary,
|
| 51 |
max_length=64,
|
|
@@ -57,39 +53,36 @@ def generate_questions(summary):
|
|
| 57 |
)
|
| 58 |
questions.append(result[0]['generated_text'])
|
| 59 |
|
| 60 |
-
# Remove duplicates
|
| 61 |
questions = list(set(questions))
|
| 62 |
return questions
|
| 63 |
|
| 64 |
def generate_concept_map(summary, questions):
|
| 65 |
-
|
| 66 |
G = nx.DiGraph()
|
| 67 |
|
| 68 |
-
|
| 69 |
summary_short = summary[:50] + "..." if len(summary) > 50 else summary
|
| 70 |
G.add_node("summary", label=summary_short)
|
| 71 |
|
| 72 |
-
|
| 73 |
for i, question in enumerate(questions):
|
| 74 |
q_short = question[:30] + "..." if len(question) > 30 else question
|
| 75 |
node_id = f"Q{i}"
|
| 76 |
G.add_node(node_id, label=q_short)
|
| 77 |
G.add_edge("summary", node_id)
|
| 78 |
|
| 79 |
-
|
| 80 |
plt.figure(figsize=(10, 8))
|
| 81 |
-
pos = nx.spring_layout(G, seed=42)
|
| 82 |
nx.draw(G, pos, with_labels=False, node_color='skyblue',
|
| 83 |
node_size=1500, arrows=True, connectionstyle='arc3,rad=0.1',
|
| 84 |
edgecolors='black', linewidths=1)
|
| 85 |
|
| 86 |
-
|
| 87 |
-
# FIX: Removed 'wrap' parameter which is not supported in this version of NetworkX
|
| 88 |
labels = nx.get_node_attributes(G, 'label')
|
| 89 |
nx.draw_networkx_labels(G, pos, labels=labels, font_size=9,
|
| 90 |
font_family='sans-serif')
|
| 91 |
|
| 92 |
-
# Save to memory buffer
|
| 93 |
buf = io.BytesIO()
|
| 94 |
plt.savefig(buf, format='png', dpi=100, bbox_inches='tight')
|
| 95 |
buf.seek(0)
|
|
@@ -101,7 +94,7 @@ def analyze_text(text, lang):
|
|
| 101 |
if not text.strip():
|
| 102 |
return "Please enter some text.", "No questions generated.", None
|
| 103 |
|
| 104 |
-
|
| 105 |
try:
|
| 106 |
print("Generating summary...")
|
| 107 |
summary = summarize_text(text, lang)
|
|
@@ -122,40 +115,32 @@ def analyze_text(text, lang):
|
|
| 122 |
print(traceback.format_exc())
|
| 123 |
return f"Error processing text: {str(e)}", "", None
|
| 124 |
|
| 125 |
-
# Alternative simpler concept map function in case the above still has issues
|
| 126 |
def generate_simple_concept_map(summary, questions):
|
| 127 |
"""Fallback concept map generator with minimal dependencies"""
|
| 128 |
plt.figure(figsize=(10, 8))
|
| 129 |
|
| 130 |
-
# Create a simple radial layout
|
| 131 |
n_questions = len(questions)
|
| 132 |
|
| 133 |
-
# Draw the central node (summary)
|
| 134 |
plt.scatter([0], [0], s=1000, color='skyblue', edgecolors='black')
|
| 135 |
plt.text(0, 0, summary[:50] + "..." if len(summary) > 50 else summary,
|
| 136 |
ha='center', va='center', fontsize=9)
|
| 137 |
|
| 138 |
-
# Draw the question nodes in a circle around the summary
|
| 139 |
radius = 5
|
| 140 |
for i, question in enumerate(questions):
|
| 141 |
angle = 2 * 3.14159 * i / max(n_questions, 1)
|
| 142 |
x = radius * 0.8 * -1 * (max(n_questions, 1) - 1) * ((i / max(n_questions - 1, 1)) - 0.5)
|
| 143 |
y = radius * 0.6 * (i % 2 * 2 - 1)
|
| 144 |
|
| 145 |
-
# Draw node
|
| 146 |
plt.scatter([x], [y], s=800, color='lightgreen', edgecolors='black')
|
| 147 |
|
| 148 |
-
# Draw edge from summary to question
|
| 149 |
plt.plot([0, x], [0, y], 'k-', alpha=0.6)
|
| 150 |
|
| 151 |
-
# Add question text
|
| 152 |
plt.text(x, y, question[:30] + "..." if len(question) > 30 else question,
|
| 153 |
ha='center', va='center', fontsize=8)
|
| 154 |
|
| 155 |
plt.axis('equal')
|
| 156 |
plt.axis('off')
|
| 157 |
|
| 158 |
-
# Save to memory buffer
|
| 159 |
buf = io.BytesIO()
|
| 160 |
plt.savefig(buf, format='png', dpi=100, bbox_inches='tight')
|
| 161 |
buf.seek(0)
|
|
@@ -184,14 +169,11 @@ def analyze_text_with_fallback(text, lang):
|
|
| 184 |
|
| 185 |
print("Creating concept map...")
|
| 186 |
try:
|
| 187 |
-
# Try the main concept map generator first
|
| 188 |
concept_map_image = generate_concept_map(summary, questions)
|
| 189 |
except Exception as e:
|
| 190 |
print(f"Main concept map failed: {e}, using fallback")
|
| 191 |
-
# If it fails, use the fallback generator
|
| 192 |
concept_map_image = generate_simple_concept_map(summary, questions)
|
| 193 |
|
| 194 |
-
# Format questions as a list
|
| 195 |
questions_text = "\n".join([f"- {q}" for q in questions])
|
| 196 |
|
| 197 |
return summary, questions_text, concept_map_image
|
|
@@ -202,7 +184,7 @@ def analyze_text_with_fallback(text, lang):
|
|
| 202 |
return f"Error processing text: {str(e)}", "", None
|
| 203 |
|
| 204 |
iface = gr.Interface(
|
| 205 |
-
fn=analyze_text_with_fallback,
|
| 206 |
inputs=[gr.Textbox(lines=10, placeholder="Enter text here..."), gr.Dropdown(["ar", "en"], label="Language")],
|
| 207 |
outputs=[gr.Textbox(label="Summary"), gr.Textbox(label="Questions"), gr.Image(label="Concept Map")],
|
| 208 |
examples=examples,
|
|
@@ -210,5 +192,4 @@ iface = gr.Interface(
|
|
| 210 |
description="Enter a text in Arabic or English and the model will summarize it and generate questions and a concept map."
|
| 211 |
)
|
| 212 |
|
| 213 |
-
# For Colab, we need to use a public URL
|
| 214 |
iface.launch(share=True)
|
|
|
|
| 9 |
|
| 10 |
print("Installation complete. Loading models...")
|
| 11 |
|
|
|
|
| 12 |
model_name = "csebuetnlp/mT5_multilingual_XLSum"
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
| 14 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 15 |
|
|
|
|
| 16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
print(f"Using device: {device}")
|
| 18 |
model = model.to(device)
|
| 19 |
|
|
|
|
| 20 |
question_generator = pipeline(
|
| 21 |
"text2text-generation",
|
| 22 |
model="valhalla/t5-small-e2e-qg",
|
|
|
|
| 40 |
return summary
|
| 41 |
|
| 42 |
def generate_questions(summary):
|
|
|
|
| 43 |
questions = []
|
| 44 |
+
for _ in range(3):
|
| 45 |
result = question_generator(
|
| 46 |
summary,
|
| 47 |
max_length=64,
|
|
|
|
| 53 |
)
|
| 54 |
questions.append(result[0]['generated_text'])
|
| 55 |
|
|
|
|
| 56 |
questions = list(set(questions))
|
| 57 |
return questions
|
| 58 |
|
| 59 |
def generate_concept_map(summary, questions):
|
| 60 |
+
|
| 61 |
G = nx.DiGraph()
|
| 62 |
|
| 63 |
+
|
| 64 |
summary_short = summary[:50] + "..." if len(summary) > 50 else summary
|
| 65 |
G.add_node("summary", label=summary_short)
|
| 66 |
|
| 67 |
+
|
| 68 |
for i, question in enumerate(questions):
|
| 69 |
q_short = question[:30] + "..." if len(question) > 30 else question
|
| 70 |
node_id = f"Q{i}"
|
| 71 |
G.add_node(node_id, label=q_short)
|
| 72 |
G.add_edge("summary", node_id)
|
| 73 |
|
| 74 |
+
|
| 75 |
plt.figure(figsize=(10, 8))
|
| 76 |
+
pos = nx.spring_layout(G, seed=42)
|
| 77 |
nx.draw(G, pos, with_labels=False, node_color='skyblue',
|
| 78 |
node_size=1500, arrows=True, connectionstyle='arc3,rad=0.1',
|
| 79 |
edgecolors='black', linewidths=1)
|
| 80 |
|
| 81 |
+
|
|
|
|
| 82 |
labels = nx.get_node_attributes(G, 'label')
|
| 83 |
nx.draw_networkx_labels(G, pos, labels=labels, font_size=9,
|
| 84 |
font_family='sans-serif')
|
| 85 |
|
|
|
|
| 86 |
buf = io.BytesIO()
|
| 87 |
plt.savefig(buf, format='png', dpi=100, bbox_inches='tight')
|
| 88 |
buf.seek(0)
|
|
|
|
| 94 |
if not text.strip():
|
| 95 |
return "Please enter some text.", "No questions generated.", None
|
| 96 |
|
| 97 |
+
|
| 98 |
try:
|
| 99 |
print("Generating summary...")
|
| 100 |
summary = summarize_text(text, lang)
|
|
|
|
| 115 |
print(traceback.format_exc())
|
| 116 |
return f"Error processing text: {str(e)}", "", None
|
| 117 |
|
|
|
|
| 118 |
def generate_simple_concept_map(summary, questions):
|
| 119 |
"""Fallback concept map generator with minimal dependencies"""
|
| 120 |
plt.figure(figsize=(10, 8))
|
| 121 |
|
|
|
|
| 122 |
n_questions = len(questions)
|
| 123 |
|
|
|
|
| 124 |
plt.scatter([0], [0], s=1000, color='skyblue', edgecolors='black')
|
| 125 |
plt.text(0, 0, summary[:50] + "..." if len(summary) > 50 else summary,
|
| 126 |
ha='center', va='center', fontsize=9)
|
| 127 |
|
|
|
|
| 128 |
radius = 5
|
| 129 |
for i, question in enumerate(questions):
|
| 130 |
angle = 2 * 3.14159 * i / max(n_questions, 1)
|
| 131 |
x = radius * 0.8 * -1 * (max(n_questions, 1) - 1) * ((i / max(n_questions - 1, 1)) - 0.5)
|
| 132 |
y = radius * 0.6 * (i % 2 * 2 - 1)
|
| 133 |
|
|
|
|
| 134 |
plt.scatter([x], [y], s=800, color='lightgreen', edgecolors='black')
|
| 135 |
|
|
|
|
| 136 |
plt.plot([0, x], [0, y], 'k-', alpha=0.6)
|
| 137 |
|
|
|
|
| 138 |
plt.text(x, y, question[:30] + "..." if len(question) > 30 else question,
|
| 139 |
ha='center', va='center', fontsize=8)
|
| 140 |
|
| 141 |
plt.axis('equal')
|
| 142 |
plt.axis('off')
|
| 143 |
|
|
|
|
| 144 |
buf = io.BytesIO()
|
| 145 |
plt.savefig(buf, format='png', dpi=100, bbox_inches='tight')
|
| 146 |
buf.seek(0)
|
|
|
|
| 169 |
|
| 170 |
print("Creating concept map...")
|
| 171 |
try:
|
|
|
|
| 172 |
concept_map_image = generate_concept_map(summary, questions)
|
| 173 |
except Exception as e:
|
| 174 |
print(f"Main concept map failed: {e}, using fallback")
|
|
|
|
| 175 |
concept_map_image = generate_simple_concept_map(summary, questions)
|
| 176 |
|
|
|
|
| 177 |
questions_text = "\n".join([f"- {q}" for q in questions])
|
| 178 |
|
| 179 |
return summary, questions_text, concept_map_image
|
|
|
|
| 184 |
return f"Error processing text: {str(e)}", "", None
|
| 185 |
|
| 186 |
iface = gr.Interface(
|
| 187 |
+
fn=analyze_text_with_fallback,
|
| 188 |
inputs=[gr.Textbox(lines=10, placeholder="Enter text here..."), gr.Dropdown(["ar", "en"], label="Language")],
|
| 189 |
outputs=[gr.Textbox(label="Summary"), gr.Textbox(label="Questions"), gr.Image(label="Concept Map")],
|
| 190 |
examples=examples,
|
|
|
|
| 192 |
description="Enter a text in Arabic or English and the model will summarize it and generate questions and a concept map."
|
| 193 |
)
|
| 194 |
|
|
|
|
| 195 |
iface.launch(share=True)
|