File size: 6,587 Bytes
cbfb0d8
 
 
 
 
 
 
 
 
 
 
 
 
1a71694
cbfb0d8
 
 
 
 
 
1a71694
ae0bfe5
 
 
 
 
cbfb0d8
 
4959a1c
cbfb0d8
90a4512
 
cbfb0d8
 
 
ae0bfe5
 
 
 
cbfb0d8
 
 
90a4512
ae0bfe5
cbfb0d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf56939
cbfb0d8
bbfde01
bf56939
 
ad653c7
cbfb0d8
 
 
43bd4b8
cbfb0d8
 
 
43bd4b8
cbfb0d8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
### app.py code is taken from https://huggingface.co/spaces/ngebodh/SimpleChatbot-Backup/blob/main/app.py
### https://medium.com/@nigelgebodh/large-language-models-chatting-with-ai-chatbots-from-google-mistral-ai-and-hugging-face-b33efedea38d

""" Simple Chatbot
@author: Sagar Padhiyar
@email: [email protected]
"""

import streamlit as st
from openai import OpenAI
import os
import sys
from dotenv import load_dotenv, dotenv_values
from huggingface_hub import InferenceClient
load_dotenv()






# # initialize the client
# client = OpenAI(
#   base_url="https://api-inference.huggingface.co/v1",
#   api_key=os.environ.get('HUGGINGFACE_API')#"hf_xxx" # Replace with your token
# ) 


base_url="https://api-inference.huggingface.co/v1"

API_KEY = os.environ.get('HUGGINGFACE_API')


#Create supported models
model_links ={
    "Mistral":base_url+"mistralai/Mistral-7B-Instruct-v0.2",
    "Gemma-7B":base_url+"google/gemma-7b-it",
    "Gemma-2B":base_url+"google/gemma-2b-it",
    "Zephyr-7B-β":base_url+"HuggingFaceH4/zephyr-7b-beta",
    # "Llama-2":"meta-llama/Llama-2-7b-chat-hf"
}

headers = {"Authorization":"Bearer "+API_KEY}

#Pull info about the model to display
model_info ={
    "Mistral":
        {'description':"""The Mistral model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
            \nIt was created by the [**Mistral AI**](https://mistral.ai/news/announcing-mistral-7b/) team as has over  **7 billion parameters.** \n""",
        'logo':'https://mistral.ai/images/logo_hubc88c4ece131b91c7cb753f40e9e1cc5_2589_256x0_resize_q97_h2_lanczos_3.webp'},
    "Gemma-7B":        
        {'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
            \nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over  **7 billion parameters.** \n""",
        'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'},
    "Gemma-2B":        
    {'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
        \nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over  **2 billion parameters.** \n""",
    'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'},
    "Zephyr-7B":        
    {'description':"""The Zephyr model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
        \nFrom Huggingface: \n\
        Zephyr is a series of language models that are trained to act as helpful assistants. \
        [Zephyr 7B Gemma](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1)\
        is the third model in the series, and is a fine-tuned version of google/gemma-7b \
        that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO)\n""",
    'logo':'https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1/resolve/main/thumbnail.png'},
    "Zephyr-7B-β":        
    {'description':"""The Zephyr model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
        \nFrom Huggingface: \n\
        Zephyr is a series of language models that are trained to act as helpful assistants. \
        [Zephyr-7B-β](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)\
        is the second model in the series, and is a fine-tuned version of mistralai/Mistral-7B-v0.1 \
        that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO)\n""",
    'logo':'https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png'},

}

def reset_conversation():
    '''
    Resets Conversation
    '''
    st.session_state.conversation = []
    st.session_state.messages = []
    return None
    



# Define the available models
models =[key for key in model_links.keys()]

# Create the sidebar with the dropdown for model selection
selected_model = st.sidebar.selectbox("Select Model", models)

#Create a temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))


#Add reset button to clear conversation
st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button


# Create model description
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown(model_info[selected_model]['description'])
st.sidebar.image(model_info[selected_model]['logo'])
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
st.sidebar.markdown("\nLearn how to build this chatbot [here](https://ngebodh.github.io/projects/2024-03-05/).")



if "prev_option" not in st.session_state:
    st.session_state.prev_option = selected_model

if st.session_state.prev_option != selected_model:
    st.session_state.messages = []
    # st.write(f"Changed to {selected_model}")
    st.session_state.prev_option = selected_model
    reset_conversation()



#Pull in the model we want to use
repo_id = model_links[selected_model]


st.subheader(f'AI - {selected_model}')
# st.title(f'ChatBot Using {selected_model}')

# Set a default model
if selected_model not in st.session_state:
    st.session_state[selected_model] = model_links[selected_model] 

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []


# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])



# Accept user input
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):

    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})


    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        client = InferenceClient(
            model=model_links[selected_model],
            headers=headers)

        output = client.text_generation(
            Prompt=[
                {"role": m["role"], "content": m["content"]}
                for m in st.session_state.messages
            ],
            temperature=temp_values,#0.5
            max_tokens=3000,
        )

        response = st.write_stream(output)
    st.session_state.messages.append({"role": "assistant", "content": response})