File size: 7,117 Bytes
54062db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import gradio as gr
import logging
import dwani
import os

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Configure dwani API settings from environment variables
dwani.api_key = os.getenv("DWANI_API_KEY")
dwani.api_base = os.getenv("DWANI_API_BASE_URL")


def translate_to_kannada(text):
    """Translate English text to Kannada using dwani.Translate.run_translate."""
    if not text or text.strip() == "":
        return ""

    try:
        resp = dwani.Translate.run_translate(
            sentences=text,
            src_lang="english",
            tgt_lang="kannada"
        )
        if isinstance(resp, dict):
            translated = resp.get("translated_text")
            if translated:
                return translated.strip()
            if "translations" in resp and isinstance(resp["translations"], list):
                return " ".join(t.strip() for t in resp["translations"] if isinstance(t, str))
            return str(resp).strip()
        elif isinstance(resp, str):
            return resp.strip()
        else:
            return str(resp).strip()
    except Exception as e:
        logger.error(f"Translation error: {e}")
        return f"Translation error: {e}"


def process_pdf(pdf_file):
    logger.debug("Received inputs - PDF: %s", pdf_file)

    if not pdf_file:
        logger.error("No PDF file provided")
        return None

    file_path = pdf_file.name if hasattr(pdf_file, 'name') else pdf_file
    pages = {1, 2}
    src_lang_code = "eng_Latn"
    tgt_lang_code = "kan_Knda"

    results = {}
    for page_number in pages:
        try:
            result = dwani.Documents.run_extract(
                file_path=file_path,
                page_number=page_number,
                src_lang=src_lang_code,
                tgt_lang=tgt_lang_code
            )
            page_data = None
            for p in result.get('pages', []):
                if p.get('processed_page') == page_number:
                    page_data = p
                    break

            if page_data is None:
                results[f"Page {page_number}"] = {"error": "No data returned for this page"}
                continue

            results[f"Page {page_number}"] = {
                "Original Text": page_data.get("page_content", "N/A"),
                "Response": ""
            }
        except dwani.exceptions.DwaniAPIError as e:
            logger.error(f"Dhwani API error on page {page_number}: {str(e)}")
            results[f"Page {page_number}"] = {"error": f"API error: {str(e)}"}
        except Exception as e:
            logger.error(f"Unexpected error on page {page_number}: {str(e)}")
            results[f"Page {page_number}"] = {"error": f"Unexpected error: {str(e)}"}

    contact_en = extract_contact_details(results)
    objective_en = extract_objective(results)
    education_en = extract_education_details(results)
    work_experience_en = extract_workexperience_details(results)
    skills_en = extract_skill(results)
    certifications_en = extract_certifications(results)

    contact_kan = translate_to_kannada(contact_en)
    objective_kan = translate_to_kannada(objective_en)
    education_kan = translate_to_kannada(education_en)
    work_experience_kan = translate_to_kannada(work_experience_en)
    skills_kan = translate_to_kannada(skills_en)
    certifications_kan = translate_to_kannada(certifications_en)

    formatted_resume = format_resume(contact_kan, objective_kan, education_kan, work_experience_kan, skills_kan, certifications_kan)

    text_filename = "resume.txt"
    with open(text_filename, "w", encoding="utf-8") as f:
        f.write(formatted_resume)

    return text_filename


def extract_text_from_response(chat_response):
    if isinstance(chat_response, dict):
        for key in ("text", "response", "content"):
            if key in chat_response and isinstance(chat_response[key], str):
                return chat_response[key]
        return str(chat_response)
    elif isinstance(chat_response, str):
        return chat_response
    else:
        return str(chat_response)


def extract_contact_details(extracted_resume):
    resume_str = str(extracted_resume)
    prompt = resume_str + " return only contact details from the resume "
    response = dwani.Chat.direct(prompt=prompt, model="gemma3")
    return extract_text_from_response(response)


def extract_objective(extracted_resume):
    resume_str = str(extracted_resume)
    prompt = resume_str + " return only objective or professional summary from the resume "
    response = dwani.Chat.direct(prompt=prompt, model="gemma3")
    return extract_text_from_response(response)


def extract_education_details(extracted_resume):
    resume_str = str(extracted_resume)
    prompt = resume_str + " return only education details from the resume "
    response = dwani.Chat.direct(prompt=prompt, model="gemma3")
    return extract_text_from_response(response)


def extract_workexperience_details(extracted_resume):
    resume_str = str(extracted_resume)
    prompt = resume_str + " return only work experience from the resume "
    response = dwani.Chat.direct(prompt=prompt, model="gemma3")
    return extract_text_from_response(response)


def extract_skill(extracted_resume):
    resume_str = str(extracted_resume)
    prompt = resume_str + " return only skills from the resume "
    response = dwani.Chat.direct(prompt=prompt, model="gemma3")
    return extract_text_from_response(response)


def extract_certifications(extracted_resume):
    resume_str = str(extracted_resume)
    prompt = resume_str + " return only certifications from the resume "
    response = dwani.Chat.direct(prompt=prompt, model="gemma3")
    return extract_text_from_response(response)


def safe_strip(value):
    if isinstance(value, dict):
        value = extract_text_from_response(value)
    return str(value).strip()


def format_resume(contact, objective, education, work_experience, skills, certifications):
    return f"""# Resume (Kannada)

## ಸಂಪರ್ಕ ವಿವರಗಳು (Contact Details)
{safe_strip(contact)}

## ಉದ್ದೇಶ (Objective)
{safe_strip(objective)}

## ಶಿಕ್ಷಣ (Education)
{safe_strip(education)}

## ಕೆಲಸದ ಅನುಭವ (Work Experience)
{safe_strip(work_experience)}

## ಕೌಶಲ್ಯಗಳು (Skills)
{safe_strip(skills)}

## ಪ್ರಮಾಣಪತ್ರಗಳು (Certifications)
{safe_strip(certifications)}
"""


with gr.Blocks(title="Resume Translator with Kannada Translation") as resume_translator:
    gr.Markdown("# Resume Upload")
    gr.Markdown("Upload a Resume PDF to extract, translate to Kannada, and download.")

    with gr.Row():
        with gr.Column():
            pdf_input = gr.File(label="Upload Resume", file_types=[".pdf"])
            submit_btn = gr.Button("Process")

        with gr.Column():
            text_output = gr.File(label="Download Formatted Resume (.txt)")

    submit_btn.click(
        fn=process_pdf,
        inputs=[pdf_input],
        outputs=text_output
    )


if __name__ == "__main__":
    resume_translator.launch()