Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,569 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from distutils.util import strtobool
|
2 |
+
from typing import Optional
|
3 |
+
import os
|
4 |
+
import argparse
|
5 |
+
import gc
|
6 |
+
import os
|
7 |
+
import random
|
8 |
+
import re
|
9 |
+
import time
|
10 |
+
from distutils.util import strtobool
|
11 |
+
import spaces
|
12 |
+
|
13 |
+
import pandas as pd
|
14 |
+
|
15 |
+
import gc
|
16 |
+
|
17 |
+
import matplotlib.pyplot as plt
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
import yaml
|
21 |
+
from diffusers import FlowMatchEulerDiscreteScheduler
|
22 |
+
from diffusers.utils.torch_utils import randn_tensor
|
23 |
+
from PIL import Image
|
24 |
+
|
25 |
+
from src.attn_utils.attn_utils import AttentionAdapter, AttnCollector
|
26 |
+
from src.attn_utils.flux_attn_processor import NewFluxAttnProcessor2_0
|
27 |
+
from src.attn_utils.seq_aligner import get_refinement_mapper
|
28 |
+
from src.callback.callback_fn import CallbackAll
|
29 |
+
from src.inversion.inverse import get_inversed_latent_list
|
30 |
+
from src.inversion.scheduling_flow_inverse import \
|
31 |
+
FlowMatchEulerDiscreteForwardScheduler
|
32 |
+
from src.pipeline.flux_pipeline import NewFluxPipeline
|
33 |
+
from src.transformer_utils.transformer_utils import (FeatureCollector,
|
34 |
+
FeatureReplace)
|
35 |
+
from src.utils import (find_token_id_differences, find_word_token_indices,
|
36 |
+
get_flux_pipeline, mask_decode, mask_interpolate)
|
37 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
38 |
+
|
39 |
+
pipe = get_flux_pipeline(pipeline_class=NewFluxPipeline)
|
40 |
+
pipe = pipe.to("cuda")
|
41 |
+
|
42 |
+
def fix_seed(random_seed):
|
43 |
+
"""
|
44 |
+
fix seed to control any randomness from a code
|
45 |
+
(enable stability of the experiments' results.)
|
46 |
+
"""
|
47 |
+
torch.manual_seed(random_seed)
|
48 |
+
torch.cuda.manual_seed(random_seed)
|
49 |
+
torch.cuda.manual_seed_all(random_seed) # if use multi-GPU
|
50 |
+
torch.backends.cudnn.deterministic = True
|
51 |
+
torch.backends.cudnn.benchmark = False
|
52 |
+
np.random.seed(random_seed)
|
53 |
+
random.seed(random_seed)
|
54 |
+
|
55 |
+
@spaces.GPU
|
56 |
+
def infer(
|
57 |
+
input_image: Union[str, Image.Image], # ⬅️ Main UI (uploaded image)
|
58 |
+
target_prompt: Union[str, List[str]] = '', # ⬅️ Main UI (text prompt)
|
59 |
+
source_prompt: Union[str, List[str]] = '', # ⬅️ Advanced accordion
|
60 |
+
seed: int = 0, # ⬅️ Advanced accordion
|
61 |
+
ca_steps: int = 10, # ⬅️ Advanced accordion
|
62 |
+
sa_steps: int = 7, # ⬅️ Advanced accordion
|
63 |
+
feature_steps: int = 5, # ⬅️ Advanced accordion
|
64 |
+
attn_topk: int = 20, # ⬅️ Advanced accordion
|
65 |
+
mask_image: Optional[Image.Image] = None, # ⬅️ Advanced (optional upload)
|
66 |
+
|
67 |
+
# Everything below is backend-related or defaults, not exposed in UI
|
68 |
+
blend_word: str = '',
|
69 |
+
results_dir: str = 'results',
|
70 |
+
model: str = 'flux',
|
71 |
+
|
72 |
+
ca_attn_layer_from: int = 13,
|
73 |
+
ca_attn_layer_to: int = 45,
|
74 |
+
sa_attn_layer_from: int = 20,
|
75 |
+
sa_attn_layer_to: int = 45,
|
76 |
+
feature_layer_from: int = 13,
|
77 |
+
feature_layer_to: int = 20,
|
78 |
+
flow_steps: int = 7,
|
79 |
+
step_start: int = 0,
|
80 |
+
num_inference_steps: int = 28,
|
81 |
+
guidance_scale: float = 3.5,
|
82 |
+
text_scale: float = 4.0,
|
83 |
+
mid_step_index: int = 14,
|
84 |
+
use_mask: bool = True,
|
85 |
+
use_ca_mask: bool = True,
|
86 |
+
mask_steps: int = 18,
|
87 |
+
mask_dilation: int = 3,
|
88 |
+
mask_nbins: int = 128
|
89 |
+
):
|
90 |
+
if isinstance(mask_image, Image.Image):
|
91 |
+
# Ensure mask is single channel
|
92 |
+
if mask_image.mode != "L":
|
93 |
+
mask_image = mask_image.convert("L")
|
94 |
+
|
95 |
+
|
96 |
+
fix_seed(seed)
|
97 |
+
device = torch.device('cuda')
|
98 |
+
|
99 |
+
|
100 |
+
attn_proc = NewFluxAttnProcessor2_0
|
101 |
+
|
102 |
+
layer_order = range(57)
|
103 |
+
|
104 |
+
ca_layer_list = layer_order[ca_attn_layer_from:ca_attn_layer_to]
|
105 |
+
sa_layer_list = layer_order[feature_layer_to:sa_attn_layer_to]
|
106 |
+
feature_layer_list = layer_order[feature_layer_from:feature_layer_to]
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
source_img = input_image.resize((1024, 1024)).convert("RGB")
|
111 |
+
#img_base_name = os.path.splitext(img_path)[0].split('/')[-1]
|
112 |
+
result_img_dir = f"{results_dir}/seed_{seed}/{target_prompt}"
|
113 |
+
|
114 |
+
source_prompt = source_prompt
|
115 |
+
target_prompt = target_prompt
|
116 |
+
prompts = [source_prompt, target_prompt]
|
117 |
+
mask_path=mask_image
|
118 |
+
print(prompts)
|
119 |
+
mask = None
|
120 |
+
|
121 |
+
if use_mask:
|
122 |
+
use_mask = True
|
123 |
+
|
124 |
+
if mask_path is not None:
|
125 |
+
mask = mask_path
|
126 |
+
mask = torch.tensor(np.array(mask)).bool()
|
127 |
+
mask = mask.to(device)
|
128 |
+
|
129 |
+
# Increase the latent blending steps if the ground truth mask is used.
|
130 |
+
mask_steps = int(num_inference_steps * 0.9)
|
131 |
+
|
132 |
+
source_ca_index = None
|
133 |
+
target_ca_index = None
|
134 |
+
use_ca_mask = False
|
135 |
+
|
136 |
+
elif use_ca_mask and source_prompt:
|
137 |
+
mask = None
|
138 |
+
if blend_word and blend_word in source_prompt:
|
139 |
+
editing_source_token_index = find_word_token_indices(source_prompt, blend_word, pipe.tokenizer_2)
|
140 |
+
editing_target_token_index = None
|
141 |
+
else:
|
142 |
+
editing_tokens_info = find_token_id_differences(*prompts, pipe.tokenizer_2)
|
143 |
+
editing_source_token_index = editing_tokens_info['prompt_1']['index']
|
144 |
+
editing_target_token_index = editing_tokens_info['prompt_2']['index']
|
145 |
+
|
146 |
+
use_ca_mask = True
|
147 |
+
if editing_source_token_index:
|
148 |
+
source_ca_index = editing_source_token_index
|
149 |
+
target_ca_index = None
|
150 |
+
elif editing_target_token_index:
|
151 |
+
source_ca_index = None
|
152 |
+
target_ca_index = editing_target_token_index
|
153 |
+
else:
|
154 |
+
source_ca_index = None
|
155 |
+
target_ca_index = None
|
156 |
+
use_ca_mask = False
|
157 |
+
|
158 |
+
else:
|
159 |
+
source_ca_index = None
|
160 |
+
target_ca_index = None
|
161 |
+
use_ca_mask = False
|
162 |
+
|
163 |
+
else:
|
164 |
+
use_mask = False
|
165 |
+
use_ca_mask = False
|
166 |
+
source_ca_index = None
|
167 |
+
target_ca_index = None
|
168 |
+
|
169 |
+
if source_prompt:
|
170 |
+
# Use I2T-CA injection
|
171 |
+
mappers, alphas = get_refinement_mapper(prompts, pipe.tokenizer_2, max_len=512)
|
172 |
+
mappers = mappers.to(device=device)
|
173 |
+
alphas = alphas.to(device=device, dtype=pipe.dtype)
|
174 |
+
alphas = alphas[:, None, None, :]
|
175 |
+
|
176 |
+
attn_adj_from = 1
|
177 |
+
|
178 |
+
else:
|
179 |
+
# Not use I2T-CA injection
|
180 |
+
mappers = None
|
181 |
+
alphas = None
|
182 |
+
|
183 |
+
ca_steps = 0
|
184 |
+
attn_adj_from=3
|
185 |
+
|
186 |
+
feature_steps = feature_steps
|
187 |
+
|
188 |
+
attn_controller = AttentionAdapter(
|
189 |
+
ca_layer_list=ca_layer_list,
|
190 |
+
sa_layer_list=sa_layer_list,
|
191 |
+
ca_steps=ca_steps,
|
192 |
+
sa_steps=sa_steps,
|
193 |
+
method='replace_topk',
|
194 |
+
topk=attn_topk,
|
195 |
+
text_scale=text_scale,
|
196 |
+
mappers=mappers,
|
197 |
+
alphas=alphas,
|
198 |
+
attn_adj_from=attn_adj_from,
|
199 |
+
save_source_ca=source_ca_index is not None,
|
200 |
+
save_target_ca=target_ca_index is not None,
|
201 |
+
)
|
202 |
+
|
203 |
+
attn_collector = AttnCollector(
|
204 |
+
transformer=pipe.transformer,
|
205 |
+
controller=attn_controller,
|
206 |
+
attn_processor_class=NewFluxAttnProcessor2_0,
|
207 |
+
)
|
208 |
+
|
209 |
+
feature_controller = FeatureReplace(
|
210 |
+
layer_list=feature_layer_list,
|
211 |
+
feature_steps=feature_steps,
|
212 |
+
)
|
213 |
+
|
214 |
+
feature_collector = FeatureCollector(
|
215 |
+
transformer=pipe.transformer,
|
216 |
+
controller=feature_controller,
|
217 |
+
)
|
218 |
+
|
219 |
+
num_prompts=len(prompts)
|
220 |
+
|
221 |
+
shape = (1, 16, 128, 128)
|
222 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
223 |
+
latents = randn_tensor(shape, device=device, generator=generator)
|
224 |
+
latents = pipe._pack_latents(latents, *latents.shape)
|
225 |
+
|
226 |
+
attn_collector.restore_orig_attention()
|
227 |
+
feature_collector.restore_orig_transformer()
|
228 |
+
|
229 |
+
t0 = time.perf_counter()
|
230 |
+
|
231 |
+
inv_latents = get_inversed_latent_list(
|
232 |
+
pipe,
|
233 |
+
source_img,
|
234 |
+
random_noise=latents,
|
235 |
+
num_inference_steps=num_inference_steps,
|
236 |
+
backward_method="ode",
|
237 |
+
use_prompt_for_inversion=False,
|
238 |
+
guidance_scale_for_inversion=0,
|
239 |
+
prompt_for_inversion='',
|
240 |
+
flow_steps=flow_steps,
|
241 |
+
)
|
242 |
+
|
243 |
+
source_latents = inv_latents[::-1]
|
244 |
+
target_latents = inv_latents[::-1]
|
245 |
+
|
246 |
+
attn_collector.register_attention_control()
|
247 |
+
feature_collector.register_transformer_control()
|
248 |
+
|
249 |
+
callback_fn = CallbackAll(
|
250 |
+
latents=source_latents,
|
251 |
+
attn_collector=attn_collector,
|
252 |
+
feature_collector=feature_collector,
|
253 |
+
feature_inject_steps=feature_steps,
|
254 |
+
mid_step_index=mid_step_index,
|
255 |
+
step_start=step_start,
|
256 |
+
use_mask=use_mask,
|
257 |
+
use_ca_mask=use_ca_mask,
|
258 |
+
source_ca_index=source_ca_index,
|
259 |
+
target_ca_index=target_ca_index,
|
260 |
+
mask_kwargs={'dilation': mask_dilation},
|
261 |
+
mask_steps=mask_steps,
|
262 |
+
mask=mask,
|
263 |
+
)
|
264 |
+
|
265 |
+
init_latent = target_latents[step_start]
|
266 |
+
init_latent = init_latent.repeat(num_prompts, 1, 1)
|
267 |
+
init_latent[0] = source_latents[mid_step_index]
|
268 |
+
|
269 |
+
os.makedirs(result_img_dir, exist_ok=True)
|
270 |
+
pipe.scheduler = FlowMatchEulerDiscreteForwardScheduler.from_config(
|
271 |
+
pipe.scheduler.config,
|
272 |
+
step_start=step_start,
|
273 |
+
margin_index_from_image=0
|
274 |
+
)
|
275 |
+
|
276 |
+
attn_controller.reset()
|
277 |
+
feature_controller.reset()
|
278 |
+
attn_controller.text_scale = text_scale
|
279 |
+
attn_controller.cur_step = step_start
|
280 |
+
feature_controller.cur_step = step_start
|
281 |
+
|
282 |
+
with torch.no_grad():
|
283 |
+
images = pipe(
|
284 |
+
prompts,
|
285 |
+
latents=init_latent,
|
286 |
+
num_images_per_prompt=1,
|
287 |
+
guidance_scale=guidance_scale,
|
288 |
+
num_inference_steps=num_inference_steps,
|
289 |
+
generator=generator,
|
290 |
+
callback_on_step_end=callback_fn,
|
291 |
+
mid_step_index=mid_step_index,
|
292 |
+
step_start=step_start,
|
293 |
+
callback_on_step_end_tensor_inputs=['latents'],
|
294 |
+
).images
|
295 |
+
|
296 |
+
t1 = time.perf_counter()
|
297 |
+
print(f"Done in {t1 - t0:.1f}s.")
|
298 |
+
|
299 |
+
source_img_path = os.path.join(result_img_dir, f"source.png")
|
300 |
+
source_img.save(source_img_path)
|
301 |
+
final_image=input_image
|
302 |
+
for i, img in enumerate(images[1:]):
|
303 |
+
target_img_path = os.path.join(result_img_dir, f"target_{i}.png")
|
304 |
+
img.save(target_img_path)
|
305 |
+
final_image=img
|
306 |
+
|
307 |
+
|
308 |
+
target_text_path = os.path.join(result_img_dir, f"target_prompts.txt")
|
309 |
+
with open(target_text_path, 'w') as file:
|
310 |
+
file.write(target_prompt + '\n')
|
311 |
+
|
312 |
+
source_text_path = os.path.join(result_img_dir, f"source_prompt.txt")
|
313 |
+
with open(source_text_path, 'w') as file:
|
314 |
+
file.write(source_prompt + '\n')
|
315 |
+
|
316 |
+
images = [source_img] + images
|
317 |
+
|
318 |
+
fs=3
|
319 |
+
n = len(images)
|
320 |
+
fig, ax = plt.subplots(1, n, figsize=(n*fs, 1*fs))
|
321 |
+
|
322 |
+
for i, img in enumerate(images):
|
323 |
+
ax[i].imshow(img)
|
324 |
+
|
325 |
+
ax[0].set_title('source')
|
326 |
+
ax[1].set_title(source_prompt, fontsize=7)
|
327 |
+
ax[2].set_title(target_prompt, fontsize=7)
|
328 |
+
|
329 |
+
overall_img_path = os.path.join(result_img_dir, f"overall.png")
|
330 |
+
plt.savefig(overall_img_path, bbox_inches='tight')
|
331 |
+
plt.close()
|
332 |
+
|
333 |
+
mask_save_dir = os.path.join(result_img_dir, f"mask")
|
334 |
+
os.makedirs(mask_save_dir, exist_ok=True)
|
335 |
+
|
336 |
+
if use_ca_mask:
|
337 |
+
ca_mask_path = os.path.join(mask_save_dir, f"mask_ca.png")
|
338 |
+
mask_img = Image.fromarray((callback_fn.mask.cpu().float().numpy() * 255).astype(np.uint8)).convert('L')
|
339 |
+
mask_img.save(ca_mask_path)
|
340 |
+
|
341 |
+
del inv_latents
|
342 |
+
del init_latent
|
343 |
+
gc.collect()
|
344 |
+
torch.cuda.empty_cache()
|
345 |
+
import shutil
|
346 |
+
shutil.rmtree(result_img_dir)
|
347 |
+
shutil.rmtree(results_dir)
|
348 |
+
|
349 |
+
return final_image, seed, gr.Button(visible=True)
|
350 |
+
|
351 |
+
import gradio as gr
|
352 |
+
from PIL import Image
|
353 |
+
import numpy as np
|
354 |
+
|
355 |
+
MAX_SEED = np.iinfo(np.int32).max
|
356 |
+
|
357 |
+
@spaces.GPU
|
358 |
+
def infer_example(input_image, target_prompt, source_prompt, seed, ca_steps, sa_steps, feature_steps, attn_topk, mask_image=None):
|
359 |
+
img, seed, _ = infer(
|
360 |
+
input_image=input_image,
|
361 |
+
target_prompt=target_prompt,
|
362 |
+
source_prompt=source_prompt,
|
363 |
+
seed=seed,
|
364 |
+
ca_steps=ca_steps,
|
365 |
+
sa_steps=sa_steps,
|
366 |
+
feature_steps=feature_steps,
|
367 |
+
attn_topk=attn_topk,
|
368 |
+
mask_image=mask_image
|
369 |
+
)
|
370 |
+
return img, seed
|
371 |
+
|
372 |
+
|
373 |
+
with gr.Blocks() as demo:
|
374 |
+
with gr.Column(elem_id="col-container"):
|
375 |
+
gr.Markdown("""# ReFlex
|
376 |
+
Text-Guided Editing of Real Images in Rectified Flow via Mid-Step Feature Extraction and Attention Adaptation
|
377 |
+
[[blog]](https://wlaud1001.github.io/ReFlex/) | [[Github]](https://github.com/wlaud1001/ReFlex)
|
378 |
+
""")
|
379 |
+
with gr.Row():
|
380 |
+
with gr.Column():
|
381 |
+
input_image = gr.Image(label="Upload the image for editing", type="pil")
|
382 |
+
mask_image = gr.Image(label="Upload optional mask", type="pil")
|
383 |
+
|
384 |
+
with gr.Row():
|
385 |
+
target_prompt = gr.Text(
|
386 |
+
label="Target Prompt",
|
387 |
+
show_label=False,
|
388 |
+
max_lines=1,
|
389 |
+
placeholder="Describe the Edited Image",
|
390 |
+
container=False,
|
391 |
+
)
|
392 |
+
|
393 |
+
with gr.Column():
|
394 |
+
source_prompt = gr.Text(
|
395 |
+
label="Source Prompt",
|
396 |
+
show_label=False,
|
397 |
+
max_lines=1,
|
398 |
+
placeholder="Enter source prompt (optional) : Describe the Input Image",
|
399 |
+
container=False,
|
400 |
+
)
|
401 |
+
run_button = gr.Button("Run", scale=10)
|
402 |
+
|
403 |
+
with gr.Accordion("Advanced Settings", open=False):
|
404 |
+
|
405 |
+
seed = gr.Slider(
|
406 |
+
label="Seed",
|
407 |
+
minimum=0,
|
408 |
+
maximum=MAX_SEED,
|
409 |
+
step=1,
|
410 |
+
value=0,
|
411 |
+
)
|
412 |
+
ca_steps = gr.Slider(
|
413 |
+
label="Cross-Attn (CA) Steps",
|
414 |
+
minimum=0,
|
415 |
+
maximum=20,
|
416 |
+
step=1,
|
417 |
+
value=10
|
418 |
+
)
|
419 |
+
sa_steps = gr.Slider(
|
420 |
+
label="Self-Attn (SA) Steps",
|
421 |
+
minimum=0,
|
422 |
+
maximum=20,
|
423 |
+
step=1,
|
424 |
+
value=7
|
425 |
+
)
|
426 |
+
feature_steps = gr.Slider(
|
427 |
+
label="Feature Injection Steps",
|
428 |
+
minimum=0,
|
429 |
+
maximum=20,
|
430 |
+
step=1,
|
431 |
+
value=5
|
432 |
+
)
|
433 |
+
attn_topk = gr.Slider(
|
434 |
+
label="Attention Top-K",
|
435 |
+
minimum=1,
|
436 |
+
maximum=64,
|
437 |
+
step=1,
|
438 |
+
value=20
|
439 |
+
)
|
440 |
+
|
441 |
+
with gr.Column():
|
442 |
+
result = gr.Image(label="Result", show_label=False, interactive=False)
|
443 |
+
reuse_button = gr.Button("Reuse this image", visible=False)
|
444 |
+
|
445 |
+
examples = gr.Examples(
|
446 |
+
examples=[
|
447 |
+
|
448 |
+
# 2. Without mask
|
449 |
+
[
|
450 |
+
"data/images/bear.jpeg",
|
451 |
+
"an image of Paddington the bear",
|
452 |
+
"",
|
453 |
+
0, 0, 12, 7, 20,
|
454 |
+
None
|
455 |
+
],
|
456 |
+
# 3. Without mask
|
457 |
+
[
|
458 |
+
"data/images/bird_painting.jpg",
|
459 |
+
"a photo of an eagle in the sky",
|
460 |
+
"",
|
461 |
+
0, 0, 12, 7, 20,
|
462 |
+
None
|
463 |
+
],
|
464 |
+
[
|
465 |
+
"data/images/dancing.jpeg",
|
466 |
+
"a couple of silver robots dancing in the garden",
|
467 |
+
"",
|
468 |
+
0, 0, 12, 7, 20,
|
469 |
+
None
|
470 |
+
],
|
471 |
+
|
472 |
+
[
|
473 |
+
"data/images/real_karate.jpeg",
|
474 |
+
"a silver robot in the snow",
|
475 |
+
"",
|
476 |
+
0, 0, 12, 7, 20,
|
477 |
+
None
|
478 |
+
],
|
479 |
+
[
|
480 |
+
"data/images/woman_book.jpg",
|
481 |
+
"a woman sitting in the grass with a laptop",
|
482 |
+
"a woman sitting in the grass with a book",
|
483 |
+
0, 10, 7, 5, 20,
|
484 |
+
None
|
485 |
+
],
|
486 |
+
[
|
487 |
+
"data/images/statue.jpg",
|
488 |
+
"photo of a statue in side view",
|
489 |
+
"photo of a statue in front view",
|
490 |
+
0, 10, 7, 5, 60,
|
491 |
+
None
|
492 |
+
],
|
493 |
+
[
|
494 |
+
"data/images/tennis.jpg",
|
495 |
+
"a iron woman robot in a black tank top and pink shorts is about to hit a tennis ball",
|
496 |
+
"a woman in a black tank top and pink shorts is about to hit a tennis ball",
|
497 |
+
0, 10, 7, 5, 20,
|
498 |
+
None
|
499 |
+
],
|
500 |
+
[
|
501 |
+
"data/images/owl_heart.jpg",
|
502 |
+
"a cartoon painting of a cute owl with a circle on its body",
|
503 |
+
"a cartoon painting of a cute owl with a heart on its body",
|
504 |
+
0, 10, 7, 5, 20,
|
505 |
+
None
|
506 |
+
],
|
507 |
+
|
508 |
+
[
|
509 |
+
"data/images/girl_mountain.jpg",
|
510 |
+
"a woman with her arms outstretched in front of the NewYork",
|
511 |
+
"a woman with her arms outstretched on top of a mountain",
|
512 |
+
0, 10, 7, 5, 20,
|
513 |
+
"data/masks/girl_mountain.jpg"
|
514 |
+
],
|
515 |
+
[
|
516 |
+
"data/images/santa.jpg",
|
517 |
+
"the christmas illustration of a santa's angry face",
|
518 |
+
"the christmas illustration of a santa's laughing face",
|
519 |
+
0, 10, 7, 5, 20,
|
520 |
+
"data/masks/santa.jpg"
|
521 |
+
],
|
522 |
+
[
|
523 |
+
"data/images/cat_mirror.jpg",
|
524 |
+
"a tiger sitting next to a mirror",
|
525 |
+
"a cat sitting next to a mirror",
|
526 |
+
0, 10, 7, 5, 20,
|
527 |
+
"data/masks/cat_mirror.jpg"
|
528 |
+
],
|
529 |
+
],
|
530 |
+
inputs=[
|
531 |
+
input_image,
|
532 |
+
target_prompt,
|
533 |
+
source_prompt,
|
534 |
+
seed,
|
535 |
+
ca_steps,
|
536 |
+
sa_steps,
|
537 |
+
feature_steps,
|
538 |
+
attn_topk,
|
539 |
+
mask_image
|
540 |
+
],
|
541 |
+
outputs=[result, seed],
|
542 |
+
fn=infer_example,
|
543 |
+
cache_examples="lazy"
|
544 |
+
)
|
545 |
+
|
546 |
+
gr.on(
|
547 |
+
triggers=[run_button.click, target_prompt.submit],
|
548 |
+
fn=infer,
|
549 |
+
inputs=[
|
550 |
+
input_image,
|
551 |
+
target_prompt,
|
552 |
+
source_prompt,
|
553 |
+
seed,
|
554 |
+
ca_steps,
|
555 |
+
sa_steps,
|
556 |
+
feature_steps,
|
557 |
+
attn_topk,
|
558 |
+
mask_image
|
559 |
+
],
|
560 |
+
outputs=[result, seed, reuse_button]
|
561 |
+
)
|
562 |
+
|
563 |
+
reuse_button.click(
|
564 |
+
fn=lambda image: image,
|
565 |
+
inputs=[result],
|
566 |
+
outputs=[input_image]
|
567 |
+
)
|
568 |
+
|
569 |
+
demo.launch(share=True, debug=True)
|