Spaces:
Running
on
Zero
Running
on
Zero
Upload 77 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +10 -0
- README.md +68 -14
- data/images/bear.jpeg +0 -0
- data/images/bird.jpg +0 -0
- data/images/bird_painting.jpg +0 -0
- data/images/cabin.jpg +3 -0
- data/images/car.jpg +0 -0
- data/images/cat_hat.jpg +0 -0
- data/images/cat_mirror.jpg +0 -0
- data/images/cat_poly.jpg +0 -0
- data/images/dancing.jpeg +0 -0
- data/images/flower.jpg +0 -0
- data/images/fruit.jpg +3 -0
- data/images/girl_mountain.jpg +0 -0
- data/images/koala.jpg +3 -0
- data/images/man_tree.jpg +3 -0
- data/images/meditation.png +3 -0
- data/images/old_couple.jpg +3 -0
- data/images/owl_heart.jpg +0 -0
- data/images/raven.jpg +0 -0
- data/images/real_karate.jpeg +0 -0
- data/images/santa.jpg +0 -0
- data/images/squirrel.jpg +0 -0
- data/images/statue.jpg +3 -0
- data/images/steak.jpg +3 -0
- data/images/tennis.jpg +0 -0
- data/images/woman_book.jpg +3 -0
- data/masks/cat_hat.jpg +0 -0
- data/masks/cat_mirror.jpg +0 -0
- data/masks/girl_mountain.jpg +0 -0
- data/masks/man_tree.jpg +0 -0
- data/masks/old_couple.jpg +0 -0
- data/masks/raven.jpg +0 -0
- data/masks/santa.jpg +0 -0
- images/main_figure.png +3 -0
- img_edit.py +492 -0
- requirements.txt +12 -0
- scripts/w_ca/run_bird.sh +20 -0
- scripts/w_ca/run_cabin.sh +20 -0
- scripts/w_ca/run_car.sh +21 -0
- scripts/w_ca/run_cat_poly.sh +21 -0
- scripts/w_ca/run_flower.sh +21 -0
- scripts/w_ca/run_fruit.sh +20 -0
- scripts/w_ca/run_koala.sh +20 -0
- scripts/w_ca/run_owl_heart.sh +20 -0
- scripts/w_ca/run_statue.sh +21 -0
- scripts/w_ca/run_steak.sh +20 -0
- scripts/w_ca/run_tennis.sh +21 -0
- scripts/w_ca/run_woman_book.sh +20 -0
- scripts/w_mask/run_cat_hat.sh +21 -0
.gitattributes
CHANGED
@@ -33,3 +33,13 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
data/images/cabin.jpg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
data/images/fruit.jpg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
data/images/koala.jpg filter=lfs diff=lfs merge=lfs -text
|
39 |
+
data/images/man_tree.jpg filter=lfs diff=lfs merge=lfs -text
|
40 |
+
data/images/meditation.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
data/images/old_couple.jpg filter=lfs diff=lfs merge=lfs -text
|
42 |
+
data/images/statue.jpg filter=lfs diff=lfs merge=lfs -text
|
43 |
+
data/images/steak.jpg filter=lfs diff=lfs merge=lfs -text
|
44 |
+
data/images/woman_book.jpg filter=lfs diff=lfs merge=lfs -text
|
45 |
+
images/main_figure.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,14 +1,68 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ReFlex: Text-Guided Editing of Real Images in Rectified Flow via Mid-Step Feature Extraction and Attention Adaptation
|
2 |
+
|
3 |
+
### [ICCV 2025] Official Pytorch implementation of the paper: "ReFlex: Text-Guided Editing of Real Images in Rectified Flow via Mid-Step Feature Extraction and Attention Adaptation"
|
4 |
+
by Jimyeon Kim, Jungwon Park, Yeji Song, Nojun Kwak, Wonjong Rhee†.
|
5 |
+
|
6 |
+
Seoul National University
|
7 |
+
|
8 |
+
[Arxiv](https://arxiv.org/abs/2507.01496)
|
9 |
+
 
|
10 |
+
[Project Page](https://wlaud1001.github.io/ReFlex/)
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+

|
15 |
+
|
16 |
+
## Setup
|
17 |
+
```
|
18 |
+
git clone https://github.com/wlaud1001/ReFlex.git
|
19 |
+
cd ReFlex
|
20 |
+
|
21 |
+
conda create -n reflex python=3.10
|
22 |
+
conda activate reflex
|
23 |
+
pip install -r requirements.txt
|
24 |
+
```
|
25 |
+
|
26 |
+
## Run
|
27 |
+
|
28 |
+
### Run exmaple
|
29 |
+
```
|
30 |
+
python img_edit.py \
|
31 |
+
--gpu {gpu} \
|
32 |
+
--seed {seed} \
|
33 |
+
--img_path {source_img_path} \
|
34 |
+
--source_prompt {source_prompt} \
|
35 |
+
--target_prompt {target_prompt} \
|
36 |
+
--results_dir {results_dir} \
|
37 |
+
--feature_steps {feature_steps} \
|
38 |
+
--attn_topk {attn_topk}
|
39 |
+
```
|
40 |
+
### Arguments
|
41 |
+
- --gpu: Index of the GPU to use.
|
42 |
+
- --seed: Random seed.
|
43 |
+
- --img_path: Path to the input real image to be edited.
|
44 |
+
- --mask_path (optional): Path to a ground-truth mask for local editing.
|
45 |
+
- If provided, this mask is used directly.
|
46 |
+
- If omitted, the editing mask is automatically generated from attention maps.
|
47 |
+
- --source_prompt (optional): Text prompt describing the content of the input image.
|
48 |
+
- If provided, mask generation and latent blending will be applied.
|
49 |
+
- If omitted, editing proceeds without latent blending.
|
50 |
+
- --target_prompt: Text prompt describing the desired edited image.
|
51 |
+
- --blend_word (optional): Word in --source_prompt to guide mask generation via its I2T-CA map.
|
52 |
+
- If omitted, the blend word is automatically inferred by comparing source_prompt and target_prompt.
|
53 |
+
- --results_dir: Directory to save the output images
|
54 |
+
###
|
55 |
+
|
56 |
+
### Scripts
|
57 |
+
We also provide several example scripts in the (./scripts) directory for some use cases and reproducible experiments.
|
58 |
+
#### Script Categories
|
59 |
+
- scripts/wo_ca/: Cases where the source prompt is not given. I2T-CA adaptation and latent blending are not applied.
|
60 |
+
- scripts/w_ca/: Cases where the source prompt is given, and the editing mask for latent blending is automatically generated from the attention map.
|
61 |
+
- scripts/w_mask/: Cases where a ground-truth mask for local editing is provided and directly used for latent blending.
|
62 |
+
|
63 |
+
You can run a script as follows:
|
64 |
+
```
|
65 |
+
./scripts/wo_ca/run_bear.sh
|
66 |
+
./scripts/w_ca/run_bird.sh
|
67 |
+
./scripts/w_mask/run_cat_hat.sh
|
68 |
+
```
|
data/images/bear.jpeg
ADDED
![]() |
data/images/bird.jpg
ADDED
![]() |
data/images/bird_painting.jpg
ADDED
![]() |
data/images/cabin.jpg
ADDED
![]() |
Git LFS Details
|
data/images/car.jpg
ADDED
![]() |
data/images/cat_hat.jpg
ADDED
![]() |
data/images/cat_mirror.jpg
ADDED
![]() |
data/images/cat_poly.jpg
ADDED
![]() |
data/images/dancing.jpeg
ADDED
![]() |
data/images/flower.jpg
ADDED
![]() |
data/images/fruit.jpg
ADDED
![]() |
Git LFS Details
|
data/images/girl_mountain.jpg
ADDED
![]() |
data/images/koala.jpg
ADDED
![]() |
Git LFS Details
|
data/images/man_tree.jpg
ADDED
![]() |
Git LFS Details
|
data/images/meditation.png
ADDED
![]() |
Git LFS Details
|
data/images/old_couple.jpg
ADDED
![]() |
Git LFS Details
|
data/images/owl_heart.jpg
ADDED
![]() |
data/images/raven.jpg
ADDED
![]() |
data/images/real_karate.jpeg
ADDED
![]() |
data/images/santa.jpg
ADDED
![]() |
data/images/squirrel.jpg
ADDED
![]() |
data/images/statue.jpg
ADDED
![]() |
Git LFS Details
|
data/images/steak.jpg
ADDED
![]() |
Git LFS Details
|
data/images/tennis.jpg
ADDED
![]() |
data/images/woman_book.jpg
ADDED
![]() |
Git LFS Details
|
data/masks/cat_hat.jpg
ADDED
![]() |
data/masks/cat_mirror.jpg
ADDED
![]() |
data/masks/girl_mountain.jpg
ADDED
![]() |
data/masks/man_tree.jpg
ADDED
![]() |
data/masks/old_couple.jpg
ADDED
![]() |
data/masks/raven.jpg
ADDED
![]() |
data/masks/santa.jpg
ADDED
![]() |
images/main_figure.png
ADDED
![]() |
Git LFS Details
|
img_edit.py
ADDED
@@ -0,0 +1,492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import gc
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
import re
|
6 |
+
import time
|
7 |
+
from distutils.util import strtobool
|
8 |
+
|
9 |
+
import pandas as pd
|
10 |
+
|
11 |
+
parser = argparse.ArgumentParser()
|
12 |
+
parser.add_argument(
|
13 |
+
"--img_path",
|
14 |
+
type=str,
|
15 |
+
)
|
16 |
+
parser.add_argument(
|
17 |
+
"--target_prompt",
|
18 |
+
type=str,
|
19 |
+
)
|
20 |
+
parser.add_argument(
|
21 |
+
"--source_prompt",
|
22 |
+
type=str,
|
23 |
+
default=''
|
24 |
+
)
|
25 |
+
parser.add_argument(
|
26 |
+
"--blend_word",
|
27 |
+
type=str,
|
28 |
+
default=''
|
29 |
+
)
|
30 |
+
parser.add_argument(
|
31 |
+
"--mask_path",
|
32 |
+
type=str,
|
33 |
+
default=None
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
parser.add_argument(
|
38 |
+
"--gpu",
|
39 |
+
type=str,
|
40 |
+
default="0",
|
41 |
+
)
|
42 |
+
parser.add_argument(
|
43 |
+
"--seed",
|
44 |
+
type=int,
|
45 |
+
default=0
|
46 |
+
)
|
47 |
+
parser.add_argument(
|
48 |
+
"--results_dir",
|
49 |
+
type=str,
|
50 |
+
default='results'
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
parser.add_argument(
|
55 |
+
"--model",
|
56 |
+
type=str,
|
57 |
+
default='flux',
|
58 |
+
choices=['flux']
|
59 |
+
)
|
60 |
+
|
61 |
+
parser.add_argument(
|
62 |
+
"--ca_steps",
|
63 |
+
type=int,
|
64 |
+
default=10,
|
65 |
+
help="Number of steps to apply I2T-CA adaptation and injection.",
|
66 |
+
)
|
67 |
+
|
68 |
+
parser.add_argument(
|
69 |
+
"--sa_steps",
|
70 |
+
type=int,
|
71 |
+
default=7
|
72 |
+
help="Number of steps to apply I2I-SA adaptation and injection.",
|
73 |
+
)
|
74 |
+
|
75 |
+
parser.add_argument(
|
76 |
+
"--feature_steps",
|
77 |
+
type=int,
|
78 |
+
default=5
|
79 |
+
help="Number of steps to inject residual features.",
|
80 |
+
)
|
81 |
+
|
82 |
+
|
83 |
+
parser.add_argument(
|
84 |
+
"--ca_attn_layer_from",
|
85 |
+
type=int,
|
86 |
+
default=13,
|
87 |
+
help="Layers to apply I2T-CA adaptation and injection.",
|
88 |
+
)
|
89 |
+
parser.add_argument(
|
90 |
+
"--ca_attn_layer_to",
|
91 |
+
type=int,
|
92 |
+
default=45,
|
93 |
+
help="Layers to apply I2T-CA adaptation and injection.",
|
94 |
+
)
|
95 |
+
|
96 |
+
parser.add_argument(
|
97 |
+
"--sa_attn_layer_from",
|
98 |
+
type=int,
|
99 |
+
default=20,
|
100 |
+
help="Layers to apply I2I-SA adaptation and injection.",
|
101 |
+
)
|
102 |
+
parser.add_argument(
|
103 |
+
"--sa_attn_layer_to",
|
104 |
+
type=int,
|
105 |
+
default=45,
|
106 |
+
help="Layers to apply I2I-SA adaptation and injection.",
|
107 |
+
)
|
108 |
+
|
109 |
+
parser.add_argument(
|
110 |
+
"--feature_layer_from",
|
111 |
+
type=int,
|
112 |
+
default=13,
|
113 |
+
help="Layers to inject residual features.",
|
114 |
+
)
|
115 |
+
parser.add_argument(
|
116 |
+
"--feature_layer_to",
|
117 |
+
type=int,
|
118 |
+
default=20,
|
119 |
+
help="Layers to inject residual features.",
|
120 |
+
)
|
121 |
+
|
122 |
+
parser.add_argument(
|
123 |
+
"--flow_steps",
|
124 |
+
type=int,
|
125 |
+
default=7,
|
126 |
+
help="Steps to apply forward step before inversion",
|
127 |
+
)
|
128 |
+
parser.add_argument(
|
129 |
+
"--step_start",
|
130 |
+
type=int,
|
131 |
+
default=0
|
132 |
+
)
|
133 |
+
|
134 |
+
|
135 |
+
parser.add_argument(
|
136 |
+
"--num_inference_steps",
|
137 |
+
type=int,
|
138 |
+
default=28
|
139 |
+
)
|
140 |
+
parser.add_argument(
|
141 |
+
"--guidance_scale",
|
142 |
+
type=float,
|
143 |
+
default=3.5,
|
144 |
+
)
|
145 |
+
|
146 |
+
parser.add_argument(
|
147 |
+
"--attn_topk",
|
148 |
+
type=int,
|
149 |
+
default=20,
|
150 |
+
help="Hyperparameter for I2I-SA adaptaion."
|
151 |
+
)
|
152 |
+
|
153 |
+
parser.add_argument(
|
154 |
+
"--text_scale",
|
155 |
+
type=float,
|
156 |
+
default=4,
|
157 |
+
help="Hyperparameter for I2T-CA adaptaion."
|
158 |
+
)
|
159 |
+
|
160 |
+
parser.add_argument(
|
161 |
+
"--mid_step_index",
|
162 |
+
type=int,
|
163 |
+
default=14,
|
164 |
+
help="Hyperparameter for mid-step feature extraction."
|
165 |
+
)
|
166 |
+
|
167 |
+
|
168 |
+
parser.add_argument(
|
169 |
+
"--use_mask",
|
170 |
+
type=strtobool,
|
171 |
+
default=True
|
172 |
+
)
|
173 |
+
|
174 |
+
parser.add_argument(
|
175 |
+
"--use_ca_mask",
|
176 |
+
type=strtobool,
|
177 |
+
default=True
|
178 |
+
)
|
179 |
+
|
180 |
+
parser.add_argument(
|
181 |
+
"--mask_steps",
|
182 |
+
type=int,
|
183 |
+
default=18,
|
184 |
+
help="Steps to apply latent blending"
|
185 |
+
)
|
186 |
+
|
187 |
+
parser.add_argument(
|
188 |
+
"--mask_dilation",
|
189 |
+
type=int,
|
190 |
+
default=3
|
191 |
+
)
|
192 |
+
parser.add_argument(
|
193 |
+
"--mask_nbins",
|
194 |
+
type=int,
|
195 |
+
default=128
|
196 |
+
)
|
197 |
+
|
198 |
+
args = parser.parse_args()
|
199 |
+
|
200 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = f"{args.gpu}"
|
201 |
+
|
202 |
+
import gc
|
203 |
+
|
204 |
+
import matplotlib.pyplot as plt
|
205 |
+
import numpy as np
|
206 |
+
import torch
|
207 |
+
import yaml
|
208 |
+
from diffusers import FlowMatchEulerDiscreteScheduler
|
209 |
+
from diffusers.utils.torch_utils import randn_tensor
|
210 |
+
from PIL import Image
|
211 |
+
|
212 |
+
from src.attn_utils.attn_utils import AttentionAdapter, AttnCollector
|
213 |
+
from src.attn_utils.flux_attn_processor import NewFluxAttnProcessor2_0
|
214 |
+
from src.attn_utils.seq_aligner import get_refinement_mapper
|
215 |
+
from src.callback.callback_fn import CallbackAll
|
216 |
+
from src.inversion.inverse import get_inversed_latent_list
|
217 |
+
from src.inversion.scheduling_flow_inverse import \
|
218 |
+
FlowMatchEulerDiscreteForwardScheduler
|
219 |
+
from src.pipeline.flux_pipeline import NewFluxPipeline
|
220 |
+
from src.transformer_utils.transformer_utils import (FeatureCollector,
|
221 |
+
FeatureReplace)
|
222 |
+
from src.utils import (find_token_id_differences, find_word_token_indices,
|
223 |
+
get_flux_pipeline, mask_decode, mask_interpolate)
|
224 |
+
|
225 |
+
|
226 |
+
def fix_seed(random_seed):
|
227 |
+
"""
|
228 |
+
fix seed to control any randomness from a code
|
229 |
+
(enable stability of the experiments' results.)
|
230 |
+
"""
|
231 |
+
torch.manual_seed(random_seed)
|
232 |
+
torch.cuda.manual_seed(random_seed)
|
233 |
+
torch.cuda.manual_seed_all(random_seed) # if use multi-GPU
|
234 |
+
torch.backends.cudnn.deterministic = True
|
235 |
+
torch.backends.cudnn.benchmark = False
|
236 |
+
np.random.seed(random_seed)
|
237 |
+
random.seed(random_seed)
|
238 |
+
|
239 |
+
def main(args):
|
240 |
+
fix_seed(args.seed)
|
241 |
+
device = torch.device('cuda')
|
242 |
+
|
243 |
+
pipe = get_flux_pipeline(pipeline_class=NewFluxPipeline)
|
244 |
+
attn_proc = NewFluxAttnProcessor2_0
|
245 |
+
pipe = pipe.to(device)
|
246 |
+
|
247 |
+
layer_order = range(57)
|
248 |
+
|
249 |
+
ca_layer_list = layer_order[args.ca_attn_layer_from:args.ca_attn_layer_to]
|
250 |
+
sa_layer_list = layer_order[args.feature_layer_to:args.sa_attn_layer_to]
|
251 |
+
feature_layer_list = layer_order[args.feature_layer_from:args.feature_layer_to]
|
252 |
+
|
253 |
+
|
254 |
+
img_path = args.img_path
|
255 |
+
source_img = Image.open(img_path).resize((1024, 1024)).convert("RGB")
|
256 |
+
img_base_name = os.path.splitext(img_path)[0].split('/')[-1]
|
257 |
+
result_img_dir = f"{args.results_dir}/seed_{args.seed}/{args.target_prompt}"
|
258 |
+
|
259 |
+
source_prompt = args.source_prompt
|
260 |
+
target_prompt = args.target_prompt
|
261 |
+
prompts = [source_prompt, target_prompt]
|
262 |
+
|
263 |
+
print(prompts)
|
264 |
+
mask = None
|
265 |
+
|
266 |
+
if args.use_mask:
|
267 |
+
use_mask = True
|
268 |
+
|
269 |
+
if args.mask_path is not None:
|
270 |
+
mask = Image.open(args.mask_path)
|
271 |
+
mask = torch.tensor(np.array(mask)).bool()
|
272 |
+
mask = mask.to(device)
|
273 |
+
|
274 |
+
# Increase the latent blending steps if the ground truth mask is used.
|
275 |
+
args.mask_steps = int(args.num_inference_steps * 0.9)
|
276 |
+
|
277 |
+
source_ca_index = None
|
278 |
+
target_ca_index = None
|
279 |
+
use_ca_mask = False
|
280 |
+
|
281 |
+
elif args.use_ca_mask and source_prompt:
|
282 |
+
mask = None
|
283 |
+
if args.blend_word and args.blend_word in source_prompt:
|
284 |
+
editing_source_token_index = find_word_token_indices(source_prompt, args.blend_word, pipe.tokenizer_2)
|
285 |
+
editing_target_token_index = None
|
286 |
+
else:
|
287 |
+
editing_tokens_info = find_token_id_differences(*prompts, pipe.tokenizer_2)
|
288 |
+
editing_source_token_index = editing_tokens_info['prompt_1']['index']
|
289 |
+
editing_target_token_index = editing_tokens_info['prompt_2']['index']
|
290 |
+
|
291 |
+
use_ca_mask = True
|
292 |
+
if editing_source_token_index:
|
293 |
+
source_ca_index = editing_source_token_index
|
294 |
+
target_ca_index = None
|
295 |
+
elif editing_target_token_index:
|
296 |
+
source_ca_index = None
|
297 |
+
target_ca_index = editing_target_token_index
|
298 |
+
else:
|
299 |
+
source_ca_index = None
|
300 |
+
target_ca_index = None
|
301 |
+
use_ca_mask = False
|
302 |
+
|
303 |
+
else:
|
304 |
+
source_ca_index = None
|
305 |
+
target_ca_index = None
|
306 |
+
use_ca_mask = False
|
307 |
+
|
308 |
+
else:
|
309 |
+
use_mask = False
|
310 |
+
use_ca_mask = False
|
311 |
+
source_ca_index = None
|
312 |
+
target_ca_index = None
|
313 |
+
|
314 |
+
if source_prompt:
|
315 |
+
# Use I2T-CA injection
|
316 |
+
mappers, alphas = get_refinement_mapper(prompts, pipe.tokenizer_2, max_len=512)
|
317 |
+
mappers = mappers.to(device=device)
|
318 |
+
alphas = alphas.to(device=device, dtype=pipe.dtype)
|
319 |
+
alphas = alphas[:, None, None, :]
|
320 |
+
|
321 |
+
ca_steps = args.ca_steps
|
322 |
+
attn_adj_from = 1
|
323 |
+
|
324 |
+
else:
|
325 |
+
# Not use I2T-CA injection
|
326 |
+
mappers = None
|
327 |
+
alphas = None
|
328 |
+
|
329 |
+
ca_steps = 0
|
330 |
+
attn_adj_from=3
|
331 |
+
|
332 |
+
sa_steps = args.sa_steps
|
333 |
+
feature_steps = args.feature_steps
|
334 |
+
|
335 |
+
attn_controller = AttentionAdapter(
|
336 |
+
ca_layer_list=ca_layer_list,
|
337 |
+
sa_layer_list=sa_layer_list,
|
338 |
+
ca_steps=ca_steps,
|
339 |
+
sa_steps=sa_steps,
|
340 |
+
method='replace_topk',
|
341 |
+
topk=args.attn_topk,
|
342 |
+
text_scale=args.text_scale,
|
343 |
+
mappers=mappers,
|
344 |
+
alphas=alphas,
|
345 |
+
attn_adj_from=attn_adj_from,
|
346 |
+
save_source_ca=source_ca_index is not None,
|
347 |
+
save_target_ca=target_ca_index is not None,
|
348 |
+
)
|
349 |
+
|
350 |
+
attn_collector = AttnCollector(
|
351 |
+
transformer=pipe.transformer,
|
352 |
+
controller=attn_controller,
|
353 |
+
attn_processor_class=NewFluxAttnProcessor2_0,
|
354 |
+
)
|
355 |
+
|
356 |
+
feature_controller = FeatureReplace(
|
357 |
+
layer_list=feature_layer_list,
|
358 |
+
feature_steps=feature_steps,
|
359 |
+
)
|
360 |
+
|
361 |
+
feature_collector = FeatureCollector(
|
362 |
+
transformer=pipe.transformer,
|
363 |
+
controller=feature_controller,
|
364 |
+
)
|
365 |
+
|
366 |
+
num_prompts=len(prompts)
|
367 |
+
|
368 |
+
shape = (1, 16, 128, 128)
|
369 |
+
generator = torch.Generator(device=device).manual_seed(args.seed)
|
370 |
+
latents = randn_tensor(shape, device=device, generator=generator)
|
371 |
+
latents = pipe._pack_latents(latents, *latents.shape)
|
372 |
+
|
373 |
+
attn_collector.restore_orig_attention()
|
374 |
+
feature_collector.restore_orig_transformer()
|
375 |
+
|
376 |
+
t0 = time.perf_counter()
|
377 |
+
|
378 |
+
inv_latents = get_inversed_latent_list(
|
379 |
+
pipe,
|
380 |
+
source_img,
|
381 |
+
random_noise=latents,
|
382 |
+
num_inference_steps=args.num_inference_steps,
|
383 |
+
backward_method="ode",
|
384 |
+
use_prompt_for_inversion=False,
|
385 |
+
guidance_scale_for_inversion=0,
|
386 |
+
prompt_for_inversion='',
|
387 |
+
flow_steps=args.flow_steps,
|
388 |
+
)
|
389 |
+
|
390 |
+
source_latents = inv_latents[::-1]
|
391 |
+
target_latents = inv_latents[::-1]
|
392 |
+
|
393 |
+
attn_collector.register_attention_control()
|
394 |
+
feature_collector.register_transformer_control()
|
395 |
+
|
396 |
+
callback_fn = CallbackAll(
|
397 |
+
latents=source_latents,
|
398 |
+
attn_collector=attn_collector,
|
399 |
+
feature_collector=feature_collector,
|
400 |
+
feature_inject_steps=feature_steps,
|
401 |
+
mid_step_index=args.mid_step_index,
|
402 |
+
step_start=args.step_start,
|
403 |
+
use_mask=use_mask,
|
404 |
+
use_ca_mask=use_ca_mask,
|
405 |
+
source_ca_index=source_ca_index,
|
406 |
+
target_ca_index=target_ca_index,
|
407 |
+
mask_kwargs={'dilation': args.mask_dilation},
|
408 |
+
mask_steps=args.mask_steps,
|
409 |
+
mask=mask,
|
410 |
+
)
|
411 |
+
|
412 |
+
init_latent = target_latents[args.step_start]
|
413 |
+
init_latent = init_latent.repeat(num_prompts, 1, 1)
|
414 |
+
init_latent[0] = source_latents[args.mid_step_index]
|
415 |
+
|
416 |
+
os.makedirs(result_img_dir, exist_ok=True)
|
417 |
+
pipe.scheduler = FlowMatchEulerDiscreteForwardScheduler.from_config(
|
418 |
+
pipe.scheduler.config,
|
419 |
+
step_start=args.step_start,
|
420 |
+
margin_index_from_image=0
|
421 |
+
)
|
422 |
+
|
423 |
+
attn_controller.reset()
|
424 |
+
feature_controller.reset()
|
425 |
+
attn_controller.text_scale = args.text_scale
|
426 |
+
attn_controller.cur_step = args.step_start
|
427 |
+
feature_controller.cur_step = args.step_start
|
428 |
+
|
429 |
+
with torch.no_grad():
|
430 |
+
images = pipe(
|
431 |
+
prompts,
|
432 |
+
latents=init_latent,
|
433 |
+
num_images_per_prompt=1,
|
434 |
+
guidance_scale=args.guidance_scale,
|
435 |
+
num_inference_steps=args.num_inference_steps,
|
436 |
+
generator=generator,
|
437 |
+
callback_on_step_end=callback_fn,
|
438 |
+
mid_step_index=args.mid_step_index,
|
439 |
+
step_start=args.step_start,
|
440 |
+
callback_on_step_end_tensor_inputs=['latents'],
|
441 |
+
).images
|
442 |
+
|
443 |
+
t1 = time.perf_counter()
|
444 |
+
print(f"Done in {t1 - t0:.1f}s.")
|
445 |
+
|
446 |
+
source_img_path = os.path.join(result_img_dir, f"source.png")
|
447 |
+
source_img.save(source_img_path)
|
448 |
+
|
449 |
+
for i, img in enumerate(images[1:]):
|
450 |
+
target_img_path = os.path.join(result_img_dir, f"target_{i}.png")
|
451 |
+
img.save(target_img_path)
|
452 |
+
|
453 |
+
target_text_path = os.path.join(result_img_dir, f"target_prompts.txt")
|
454 |
+
with open(target_text_path, 'w') as file:
|
455 |
+
file.write(target_prompt + '\n')
|
456 |
+
|
457 |
+
source_text_path = os.path.join(result_img_dir, f"source_prompt.txt")
|
458 |
+
with open(source_text_path, 'w') as file:
|
459 |
+
file.write(source_prompt + '\n')
|
460 |
+
|
461 |
+
images = [source_img] + images
|
462 |
+
|
463 |
+
fs=3
|
464 |
+
n = len(images)
|
465 |
+
fig, ax = plt.subplots(1, n, figsize=(n*fs, 1*fs))
|
466 |
+
|
467 |
+
for i, img in enumerate(images):
|
468 |
+
ax[i].imshow(img)
|
469 |
+
|
470 |
+
ax[0].set_title('source')
|
471 |
+
ax[1].set_title(source_prompt, fontsize=7)
|
472 |
+
ax[2].set_title(target_prompt, fontsize=7)
|
473 |
+
|
474 |
+
overall_img_path = os.path.join(result_img_dir, f"overall.png")
|
475 |
+
plt.savefig(overall_img_path, bbox_inches='tight')
|
476 |
+
plt.close()
|
477 |
+
|
478 |
+
mask_save_dir = os.path.join(result_img_dir, f"mask")
|
479 |
+
os.makedirs(mask_save_dir, exist_ok=True)
|
480 |
+
|
481 |
+
if use_ca_mask:
|
482 |
+
ca_mask_path = os.path.join(mask_save_dir, f"mask_ca.png")
|
483 |
+
mask_img = Image.fromarray((callback_fn.mask.cpu().float().numpy() * 255).astype(np.uint8)).convert('L')
|
484 |
+
mask_img.save(ca_mask_path)
|
485 |
+
|
486 |
+
del inv_latents
|
487 |
+
del init_latent
|
488 |
+
gc.collect()
|
489 |
+
torch.cuda.empty_cache()
|
490 |
+
|
491 |
+
if __name__ == '__main__':
|
492 |
+
main(args)
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers==0.31.0
|
2 |
+
torch==2.4.1
|
3 |
+
pandas
|
4 |
+
matplotlib
|
5 |
+
transformers==4.44.2
|
6 |
+
torchao
|
7 |
+
torchvision
|
8 |
+
opencv-python
|
9 |
+
scikit-image
|
10 |
+
accelerate
|
11 |
+
sentencepiece
|
12 |
+
protobuf
|
scripts/w_ca/run_bird.sh
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
source_prompt='a blue and white bird sits on a branch'
|
2 |
+
target_prompt='a blue and white butterfly sits on a branch'
|
3 |
+
|
4 |
+
ca_steps=10
|
5 |
+
sa_steps=7
|
6 |
+
feature_steps=5
|
7 |
+
|
8 |
+
attn_topk=20
|
9 |
+
|
10 |
+
python img_edit.py \
|
11 |
+
--gpu 3 \
|
12 |
+
--seed 0 \
|
13 |
+
--img_path 'data/images/bird.jpg' \
|
14 |
+
--source_prompt "$source_prompt" \
|
15 |
+
--target_prompt "$target_prompt" \
|
16 |
+
--results_dir 'results/bird' \
|
17 |
+
--ca_steps $ca_steps \
|
18 |
+
--sa_steps $sa_steps \
|
19 |
+
--feature_steps $feature_steps \
|
20 |
+
--attn_topk $attn_topk
|
scripts/w_ca/run_cabin.sh
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
source_prompt='a painting of a cabin in the snow with mountains in the background'
|
2 |
+
target_prompt='a painting of a car in the snow with mountains in the background'
|
3 |
+
|
4 |
+
ca_steps=10
|
5 |
+
sa_steps=7
|
6 |
+
feature_steps=5
|
7 |
+
|
8 |
+
attn_topk=40
|
9 |
+
|
10 |
+
python img_edit.py \
|
11 |
+
--gpu 3 \
|
12 |
+
--seed 0 \
|
13 |
+
--img_path 'data/images/cabin.jpg' \
|
14 |
+
--source_prompt "$source_prompt" \
|
15 |
+
--target_prompt "$target_prompt" \
|
16 |
+
--results_dir 'results/cabin' \
|
17 |
+
--ca_steps $ca_steps \
|
18 |
+
--sa_steps $sa_steps \
|
19 |
+
--feature_steps $feature_steps \
|
20 |
+
--attn_topk $attn_topk
|
scripts/w_ca/run_car.sh
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
source_prompt='a sports car driving down the street'
|
2 |
+
target_prompt='stained glass window of a sports car driving down the street'
|
3 |
+
|
4 |
+
ca_steps=10
|
5 |
+
sa_steps=7
|
6 |
+
feature_steps=5
|
7 |
+
|
8 |
+
attn_topk=10
|
9 |
+
|
10 |
+
python img_edit.py \
|
11 |
+
--gpu 1 \
|
12 |
+
--seed 0 \
|
13 |
+
--img_path 'data/images/car.jpg' \
|
14 |
+
--source_prompt "$source_prompt" \
|
15 |
+
--target_prompt "$target_prompt" \
|
16 |
+
--results_dir 'results/car' \
|
17 |
+
--ca_steps $ca_steps \
|
18 |
+
--sa_steps $sa_steps \
|
19 |
+
--feature_steps $feature_steps \
|
20 |
+
--use_mask 0 \
|
21 |
+
--attn_topk $attn_topk
|
scripts/w_ca/run_cat_poly.sh
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
source_prompt='a cat is shown in a low polygonal style'
|
2 |
+
target_prompt='a fox is shown in a low polygonal style'
|
3 |
+
|
4 |
+
ca_steps=10
|
5 |
+
sa_steps=7
|
6 |
+
feature_steps=5
|
7 |
+
|
8 |
+
attn_topk=20
|
9 |
+
|
10 |
+
python img_edit.py \
|
11 |
+
--gpu 1 \
|
12 |
+
--seed 0 \
|
13 |
+
--img_path 'data/images/cat_poly.jpg' \
|
14 |
+
--source_prompt "$source_prompt" \
|
15 |
+
--target_prompt "$target_prompt" \
|
16 |
+
--results_dir 'results/cat_poly' \
|
17 |
+
--ca_steps $ca_steps \
|
18 |
+
--sa_steps $sa_steps \
|
19 |
+
--feature_steps $feature_steps \
|
20 |
+
--attn_topk $attn_topk
|
21 |
+
|
scripts/w_ca/run_flower.sh
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
source_prompt='a pink flower with yellow center in the middle'
|
2 |
+
target_prompt='a blue flower with red center in the middle'
|
3 |
+
|
4 |
+
ca_steps=10
|
5 |
+
sa_steps=7
|
6 |
+
feature_steps=5
|
7 |
+
|
8 |
+
attn_topk=20
|
9 |
+
|
10 |
+
python img_edit.py \
|
11 |
+
--gpu 1 \
|
12 |
+
--seed 0 \
|
13 |
+
--img_path 'data/images/flower.jpg' \
|
14 |
+
--source_prompt "$source_prompt" \
|
15 |
+
--target_prompt "$target_prompt" \
|
16 |
+
--results_dir 'results/flower' \
|
17 |
+
--ca_steps $ca_steps \
|
18 |
+
--sa_steps $sa_steps \
|
19 |
+
--feature_steps $feature_steps \
|
20 |
+
--attn_topk $attn_topk \
|
21 |
+
--blend_word 'flower'
|
scripts/w_ca/run_fruit.sh
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
source_prompt='white plate with fruits on it'
|
2 |
+
target_prompt='white plate with pizza on it'
|
3 |
+
|
4 |
+
ca_steps=10
|
5 |
+
sa_steps=7
|
6 |
+
feature_steps=5
|
7 |
+
|
8 |
+
attn_topk=40
|
9 |
+
|
10 |
+
python img_edit.py \
|
11 |
+
--gpu 0 \
|
12 |
+
--seed 0 \
|
13 |
+
--img_path 'data/images/fruit.jpg' \
|
14 |
+
--source_prompt "$source_prompt" \
|
15 |
+
--target_prompt "$target_prompt" \
|
16 |
+
--results_dir 'results/fruit' \
|
17 |
+
--ca_steps $ca_steps \
|
18 |
+
--sa_steps $sa_steps \
|
19 |
+
--feature_steps $feature_steps \
|
20 |
+
--attn_topk $attn_topk
|
scripts/w_ca/run_koala.sh
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
source_prompt='a koala is sitting on a tree'
|
2 |
+
target_prompt='a koala and a bird is sitting on a tree'
|
3 |
+
|
4 |
+
ca_steps=10
|
5 |
+
sa_steps=7
|
6 |
+
feature_steps=5
|
7 |
+
|
8 |
+
attn_topk=40
|
9 |
+
|
10 |
+
python img_edit.py \
|
11 |
+
--gpu 3 \
|
12 |
+
--seed 0 \
|
13 |
+
--img_path 'data/images/koala.jpg' \
|
14 |
+
--source_prompt "$source_prompt" \
|
15 |
+
--target_prompt "$target_prompt" \
|
16 |
+
--results_dir 'results/koala' \
|
17 |
+
--ca_steps $ca_steps \
|
18 |
+
--sa_steps $sa_steps \
|
19 |
+
--feature_steps $feature_steps \
|
20 |
+
--attn_topk $attn_topk
|
scripts/w_ca/run_owl_heart.sh
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
source_prompt='a cartoon painting of a cute owl with a heart on its body'
|
2 |
+
target_prompt='a cartoon painting of a cute owl with a circle on its body'
|
3 |
+
|
4 |
+
ca_steps=10
|
5 |
+
sa_steps=7
|
6 |
+
feature_steps=5
|
7 |
+
|
8 |
+
attn_topk=20
|
9 |
+
|
10 |
+
python img_edit.py \
|
11 |
+
--gpu 1 \
|
12 |
+
--seed 0 \
|
13 |
+
--img_path 'data/images/owl_heart.jpg' \
|
14 |
+
--source_prompt "$source_prompt" \
|
15 |
+
--target_prompt "$target_prompt" \
|
16 |
+
--results_dir 'results/owl_heart' \
|
17 |
+
--ca_steps $ca_steps \
|
18 |
+
--sa_steps $sa_steps \
|
19 |
+
--feature_steps $feature_steps \
|
20 |
+
--attn_topk $attn_topk
|
scripts/w_ca/run_statue.sh
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
source_prompt='photo of a statue in front view'
|
2 |
+
target_prompt='photo of a statue in side view'
|
3 |
+
|
4 |
+
ca_steps=10
|
5 |
+
sa_steps=7
|
6 |
+
feature_steps=5
|
7 |
+
|
8 |
+
attn_topk=60
|
9 |
+
|
10 |
+
python img_edit.py \
|
11 |
+
--gpu 0 \
|
12 |
+
--seed 0 \
|
13 |
+
--img_path 'data/images/statue.jpg' \
|
14 |
+
--source_prompt "$source_prompt" \
|
15 |
+
--target_prompt "$target_prompt" \
|
16 |
+
--results_dir 'results/statue' \
|
17 |
+
--ca_steps $ca_steps \
|
18 |
+
--sa_steps $sa_steps \
|
19 |
+
--feature_steps $feature_steps \
|
20 |
+
--attn_topk $attn_topk \
|
21 |
+
--blend_word 'statue'
|
scripts/w_ca/run_steak.sh
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
source_prompt='a plate with steak on it'
|
2 |
+
target_prompt='a plate with salmon on it'
|
3 |
+
|
4 |
+
ca_steps=10
|
5 |
+
sa_steps=7
|
6 |
+
feature_steps=5
|
7 |
+
|
8 |
+
attn_topk=40
|
9 |
+
|
10 |
+
python img_edit.py \
|
11 |
+
--gpu 0 \
|
12 |
+
--seed 0 \
|
13 |
+
--img_path 'data/images/steak.jpg' \
|
14 |
+
--source_prompt "$source_prompt" \
|
15 |
+
--target_prompt "$target_prompt" \
|
16 |
+
--results_dir 'results/steak' \
|
17 |
+
--ca_steps $ca_steps \
|
18 |
+
--sa_steps $sa_steps \
|
19 |
+
--feature_steps $feature_steps \
|
20 |
+
--attn_topk $attn_topk
|
scripts/w_ca/run_tennis.sh
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
source_prompt='a woman in a black tank top and pink shorts is about to hit a tennis ball'
|
2 |
+
target_prompt='a iron woman robot in a black tank top and pink shorts is about to hit a tennis ball'
|
3 |
+
|
4 |
+
ca_steps=10
|
5 |
+
sa_steps=7
|
6 |
+
feature_steps=5
|
7 |
+
|
8 |
+
attn_topk=20
|
9 |
+
|
10 |
+
python img_edit.py \
|
11 |
+
--gpu 0 \
|
12 |
+
--seed 0 \
|
13 |
+
--img_path 'data/images/tennis.jpg' \
|
14 |
+
--source_prompt "$source_prompt" \
|
15 |
+
--target_prompt "$target_prompt" \
|
16 |
+
--results_dir 'results/tennis' \
|
17 |
+
--ca_steps $ca_steps \
|
18 |
+
--sa_steps $sa_steps \
|
19 |
+
--feature_steps $feature_steps \
|
20 |
+
--attn_topk $attn_topk \
|
21 |
+
--blend_word 'woman'
|
scripts/w_ca/run_woman_book.sh
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
source_prompt='a woman sitting in the grass with a book'
|
2 |
+
target_prompt='a woman sitting in the grass with a laptop'
|
3 |
+
|
4 |
+
ca_steps=10
|
5 |
+
sa_steps=7
|
6 |
+
feature_steps=5
|
7 |
+
|
8 |
+
attn_topk=20
|
9 |
+
|
10 |
+
python img_edit.py \
|
11 |
+
--gpu 1 \
|
12 |
+
--seed 0 \
|
13 |
+
--img_path 'data/images/woman_book.jpg' \
|
14 |
+
--source_prompt "$source_prompt" \
|
15 |
+
--target_prompt "$target_prompt" \
|
16 |
+
--results_dir 'results/woman_book' \
|
17 |
+
--ca_steps $ca_steps \
|
18 |
+
--sa_steps $sa_steps \
|
19 |
+
--feature_steps $feature_steps \
|
20 |
+
--attn_topk $attn_topk
|
scripts/w_mask/run_cat_hat.sh
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
source_prompt='a cat wearing a pink hat'
|
2 |
+
target_prompt='a tiger wearing a pink hat'
|
3 |
+
|
4 |
+
ca_steps=10
|
5 |
+
sa_steps=7
|
6 |
+
feature_steps=5
|
7 |
+
|
8 |
+
attn_topk=20
|
9 |
+
|
10 |
+
python img_edit.py \
|
11 |
+
--gpu 3 \
|
12 |
+
--seed 0 \
|
13 |
+
--img_path 'data/images/cat_hat.jpg' \
|
14 |
+
--mask_path 'data/masks/cat_hat.jpg' \
|
15 |
+
--source_prompt "$source_prompt" \
|
16 |
+
--target_prompt "$target_prompt" \
|
17 |
+
--results_dir 'results/cat_hat' \
|
18 |
+
--ca_steps $ca_steps \
|
19 |
+
--sa_steps $sa_steps \
|
20 |
+
--feature_steps $feature_steps \
|
21 |
+
--attn_topk $attn_topk
|