Sajidahamed's picture
Update app.py
7cebfba verified
raw
history blame
1.61 kB
import gradio as gr
import os
import torchaudio
from speechbrain.pretrained import EncoderClassifier
def accent_detect(video_file):
# Save uploaded video
if isinstance(video_file, tuple):
video_path = video_file[0]
else:
video_path = "uploaded_input.mp4"
with open(video_path, "wb") as f:
f.write(video_file.read())
# Extract audio
os.system(f"ffmpeg -y -i {video_path} -ar 16000 -ac 1 -vn audio.wav")
if not os.path.exists("audio.wav") or os.path.getsize("audio.wav") < 1000:
return "Audio extraction failed. Please check your file."
# Classify accent
accent_model = EncoderClassifier.from_hparams(
source="speechbrain/lang-id-commonlanguage_ecapa",
savedir="tmp_accent_model"
)
signal, fs = torchaudio.load("audio.wav")
if signal.shape[0] > 1:
signal = signal[0].unsqueeze(0)
prediction = accent_model.classify_batch(signal)
pred_label = prediction[3][0]
pred_scores = prediction[1][0]
confidence = float(pred_scores.max()) * 100
explanation = f"Predicted Accent: {pred_label} ({confidence:.1f}%)\nThe model is {confidence:.0f}% confident this is a {pred_label} English accent."
return explanation
demo = gr.Interface(
fn=accent_detect,
inputs=gr.Video(type="filepath", label="Upload a Video File (MP4, WEBM, etc.)"),
outputs="text",
title="🗣️ English Accent Classifier (Gradio Demo)",
description="Upload a short video clip of English speech. This tool predicts the English accent and confidence."
)
if __name__ == "__main__":
demo.launch()