File size: 1,747 Bytes
430933d
 
 
 
 
be53401
 
 
 
430933d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

import re
import tweepy
import pandas as pd
import gradio as gr
import itertools
import collections
from collections import Counter
import numpy as np
def search_hashtag1(hashtag_phrase):
  #hashtag_phrase=input("Enter hashtahg")
  consumer_key="30GAxNeTfZuPL5SfNhFBodmRF" 
  consumer_secret="C6O64nP0XjtwaAnXYL9zCcDZKEIP2iL1yVdlsNJtwLiZ5AEEBs"
  access_token="1246523558563471360-WrbCqO8phqjIzx393mrfOSKvDFPmey"
  access_token_secret="u7B6yX6ZyTa5ph7xkCFnbzyuD9jbuHHJNL0Y4S7mdZb1J"
  auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
  auth.set_access_token(access_token, access_token_secret)
  api = tweepy.API(auth)
  fname = '_'.join(re.findall(r"#(\w+)", hashtag_phrase))
  data_frame=pd.DataFrame(columns={"timestamp"})
  timestamp=[]
  tweet_text=[]
  user_name=[]
  for tweet in tweepy.Cursor(api.search, q=hashtag_phrase+' -filter:retweets',lang="en", tweet_mode='extended').items(200):
    timestamp1=tweet.created_at
    timestamp.append(timestamp1)
    tweet_text1=tweet.full_text.replace('\n',' ').encode('utf-8')
    tweet_text.append(tweet_text1)
    user_name1=tweet.user.screen_name.encode('utf-8')
    user_name.append(user_name1)
  data2=pd.DataFrame(timestamp,columns={"timestamp"})
  data1=pd.DataFrame(tweet_text,columns={"tweet_text"})
  data3=pd.DataFrame(user_name,columns={"user_name"})
  data4=pd.concat([data1,data2],axis=1)
  data5=pd.concat([data4,data3],axis=1)
  data5.to_csv("tweet_data.csv")
  #data6=data5.head(10)
  return data5
iface = gr.Interface(search_hashtag1,inputs="text",outputs="dataframe",title='Sakil Tweetlib6 App',description="You can extract tweets based on Hashtag.e.g. Please enter #datascience. The app extracts top 500 recent tweets based on the hashtag.")
iface.launch(inline=False)